note that `KILL USER foo` should *not* fail with ER_KILL_DENIED_ERROR
when SHOW PROCESSLIST doesn't show connections of that user.
Because no connections exist or because the caller has no PROCESS -
doesn't matter.
also, fix the error message to make sense
("You are not owner of thread <current connection id>" is ridiculous)
The error string from ER_KILL_QUERY_DENIED_ERROR took a different
type to ER_KILL_DENIED_ERROR for the thread id. This shows
up in differences on 32 big endian arches like powerpc (Deb notation).
Normalize the passing of the THD->id to its real type of my_thread_id,
and cast to (long long) on output. As such normalize the
ER_KILL_QUERY_DENIED_ERROR to that convention too.
Note for upwards merge, convert the type to %lld on new translations
of ER_KILL_QUERY_DENIED_ERROR.
Use SELECT_LEX to save lists for ORDER BY and GROUP BY before parsing
WINDOW clauses / specifications. This is needed for proper parsing
of a nested WINDOW clause when a WINDOW clause is used in a subquery
contained in another WINDOW clause.
Fix assignment of empty SQL_I_List to another one (in case of empty list
next shoud point on first).
Consistent with MDEV-4206 and empty log_slow_filter still means
no explict filtering. Since 21518ab2e4 however the
log_queries_not_using_indexes became stored in the same variable.
As we need to test for the absense of log_queries_not_using_indexes
the SERVER_QUERY_NO_INDEX USED part of log_slow_statement, the empty
criteria resulted in an always true to log queries not using indexes if
log_slow_filter was set to empty.
Adjusted the log_slow.test for MDEV-4206 as slow_log_query has been
global and session for a while and it was relying on the MDEV-21187
buggy behavior to detect a slow query.
Reviewer: Monty
Fix `wsrep_table_accessible_when_detached()` so that commands that
access no tables are rejected while a node is disconnected from a
cluster.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
=========== Problem =============
- `show columns` is not working for temporary tables, even though there
is enough privilege `create temporary tables`.
=========== Solution =============
- Append `TMP_TABLE_ACLS` privilege when running `show columns` for temp
tables.
- Additionally `check_access()` for database only once, not for each
field
=========== Additionally =============
- Update comments for function `check_table_access` arguments
Reviewed by: <vicentiu@mariadb.org>
- Added missing information about database of corresponding table for various types of commands
- Update some typos
- Reviewed by: <vicentiu@mariadb.org>
There are separate flags DBUG_OFF for disabling the DBUG facility
and ENABLED_DEBUG_SYNC for enabling the DEBUG_SYNC facility.
Let us allow debug builds without DEBUG_SYNC.
Note: For CMAKE_BUILD_TYPE=Debug, CMakeLists.txt will continue to
define ENABLED_DEBUG_SYNC.
Remove table_count from Query_tables_list (not used, moved to MYSQL_LOCK).
Rename table_count from LEX to avoid mixing it with other counters of tables.
Function wsrep_read_only_option was already removed in commit
d54bc3c0d1 because it could cause race condition on variable
opt_readonly so that value OFF can become permanent.
Removed function again and added test case. Note that writes
to TEMPORARY tables are still allowed when read_only=ON.
Window Functions code tries to minimize the number of times it
needs to sort the select's resultset by finding "compatible"
OVER (PARTITION BY ... ORDER BY ...) clauses.
This employs compare_order_elements(). That function assumed that
the order expressions are Item_field-derived objects (that refer
to a temp.table). But this is not always the case: one can
construct queries order expressions are arbitrary item expressions.
Add handling for such expressions: sort them according to the window
specification they appeared in.
This means we cannot detect that two compatible PARTITION BY clauses
that use expressions can share the sorting step.
But at least we won't crash.
IF an INSERT/REPLACE SELECT statement contained an ON expression in the top
level select and this expression used a subquery with a column reference
that could not be resolved then an attempt to resolve this reference as
an outer reference caused a crash of the server. This happened because the
outer context field in the Name_resolution_context structure was not set
to NULL for such references. Rather it pointed to the first element in
the select_stack.
Note that starting from 10.4 we cannot use the SELECT_LEX::outer_select()
method when parsing a SELECT construct.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
* Fix test galera.MW-44 to make it work with --ps-protocol
* Skip test galera.MW-328C under --ps-protocol This test
relies on wsrep_retry_autocommit, which has no effect
under ps-protocol.
* Return WSREP related errors on COM_STMT_PREPARE commands
Change wsrep_command_no_result() to allow sending back errors
when a statement is prepared. For example, to handle deadlock
error due to BF aborted transaction during prepare.
* Add sync waiting before statement prepare
When a statement is prepared, tables used in the statement may be
opened and checked for existence. Because of that, some tests (for
example galera_create_table_as_select) that CREATE a table in one node
and then SELECT from the same table in another node may result in errors
due to non existing table.
To make tests behave similarly under normal and PS protocol, we add a
call to sync wait before preparing statements that would sync wait
during normal execution.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Handling BF abort for prepared statement execution so that EXECUTE processing will continue
until parameter setup is complete, before BF abort bails out the statement execution.
THD class has new boolean member: wsrep_delayed_BF_abort, which is set if BF abort is observed
in do_command() right after reading client's packet, and if the client has sent PS execute command.
In such case, the deadlock error is not returned immediately back to client, but the PS execution
will be started. However, the PS execution loop, will now check if wsrep_delayed_BF_abort is set, and
stop the PS execution after the type information has been assigned for the PS.
With this, the PS protocol type information, which is present in the first PS EXECUTE command, is not lost
even if the first PS EXECUTE command was marked to abort.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
extra2_read_len resolved by keeping the implementation
in sql/table.cc by exposed it for use by ha_partition.cc
Remove identical implementation in unireg.h
(ref: bfed2c7d57)
Per Marko's comment in JIRA, sql_kill is passing the thread id
as long long. We change the format of the error messages to match,
and cast the thread id to long long in sql_kill_user.
The 10.5 test error main.grant_kill showed up a incorrect
thread id on a big endian architecture.
The cause of this is the sql_kill_user function assumed the
error was ER_OUT_OF_RESOURCES, when the the actual error was
ER_KILL_DENIED_ERROR. ER_KILL_DENIED_ERROR as an error message
requires a thread id to be passed as unsigned long, however a
user/host was passed.
ER_OUT_OF_RESOURCES doesn't even take a user/host, despite
the optimistic comment. We remove this being passed as an
argument to the function so that when MDEV-21978 is implemented
one less compiler format warning is generated (which would
have caught this error sooner).
Thanks Otto for reporting and Marko for analysis.
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is
wsrep_thd_LOCK()
wsrep_kill_victim()
lock_rec_other_has_conflicting()
lock_clust_rec_read_check_and_lock()
row_search_mvcc()
ha_innobase::index_read()
ha_innobase::rnd_pos()
handler::ha_rnd_pos()
handler::rnd_pos_by_record()
handler::ha_rnd_pos_by_record()
Rows_log_event::find_row()
Update_rows_log_event::do_exec_row()
Rows_log_event::do_apply_event()
Log_event::apply_event()
wsrep_apply_events()
and mutexes are taken in the order
lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data
When a normal KILL statement is executed, the stack is
innobase_kill_query()
kill_handlerton()
plugin_foreach_with_mask()
ha_kill_query()
THD::awake()
kill_one_thread()
and mutexes are
victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is
wsrep_thd_LOCK()
wsrep_kill_victim()
lock_rec_other_has_conflicting()
lock_clust_rec_read_check_and_lock()
row_search_mvcc()
ha_innobase::index_read()
ha_innobase::rnd_pos()
handler::ha_rnd_pos()
handler::rnd_pos_by_record()
handler::ha_rnd_pos_by_record()
Rows_log_event::find_row()
Update_rows_log_event::do_exec_row()
Rows_log_event::do_apply_event()
Log_event::apply_event()
wsrep_apply_events()
and mutexes are taken in the order
lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data
When a normal KILL statement is executed, the stack is
innobase_kill_query()
kill_handlerton()
plugin_foreach_with_mask()
ha_kill_query()
THD::awake()
kill_one_thread()
and mutexes are
victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Mutex order violation when wsrep bf thread kills a conflicting trx,
the stack is
wsrep_thd_LOCK()
wsrep_kill_victim()
lock_rec_other_has_conflicting()
lock_clust_rec_read_check_and_lock()
row_search_mvcc()
ha_innobase::index_read()
ha_innobase::rnd_pos()
handler::ha_rnd_pos()
handler::rnd_pos_by_record()
handler::ha_rnd_pos_by_record()
Rows_log_event::find_row()
Update_rows_log_event::do_exec_row()
Rows_log_event::do_apply_event()
Log_event::apply_event()
wsrep_apply_events()
and mutexes are taken in the order
lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data
When a normal KILL statement is executed, the stack is
innobase_kill_query()
kill_handlerton()
plugin_foreach_with_mask()
ha_kill_query()
THD::awake()
kill_one_thread()
and mutexes are
victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This also fixed unprotected calls to wsrep_thd_abort
that will use wsrep_abort_transaction. This is fixed
by holding THD::LOCK_thd_data while we abort transaction.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
This patch is the plan D variant for fixing potetial mutex locking
order exercised by BF aborting and KILL command execution.
In this approach, KILL command is replicated as TOI operation.
This guarantees total isolation for the KILL command execution
in the first node: there is no concurrent replication applying
and no concurrent DDL executing. Therefore there is no risk of
BF aborting to happen in parallel with KILL command execution
either. Potential mutex deadlocks between the different mutex
access paths with KILL command execution and BF aborting cannot
therefore happen.
TOI replication is used, in this approach, purely as means
to provide isolated KILL command execution in the first node.
KILL command should not (and must not) be applied in secondary
nodes. In this patch, we make this sure by skipping KILL
execution in secondary nodes, in applying phase, where we
bail out if applier thread is trying to execute KILL command.
This is effective, but skipping the applying of KILL command
could happen much earlier as well.
This patch also fixes mutex locking order and unprotected
THD member accesses on bf aborting case. We try to hold
THD::LOCK_thd_data during bf aborting. Only case where it
is not possible is at wsrep_abort_transaction before
call wsrep_innobase_kill_one_trx where we take InnoDB
mutexes first and then THD::LOCK_thd_data.
This will also fix possible race condition during
close_connection and while wsrep is disconnecting
connections.
Added wsrep_bf_kill_debug test case
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
In a rebase of the merge, two preceding commits were accidentally reverted:
commit 112b23969a (MDEV-26308)
commit ac2857a5fb (MDEV-25717)
Thanks to Daniele Sciascia for noticing this.
Contains following fixes:
* allow TOI commands to timeout while trying to acquire TOI with
override lock_wait_timeout with a LONG_TIMEOUT only after
succesfully entering TOI
* only ignore lock_wait_timeout on TOI
* fix galera_split_brain test as TOI operation now returns ER_LOCK_WAIT_TIMEOUT after lock_wait_timeout
* explicitly test for TOI
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
Using ROLLBACK with `completion_type = CHAIN` result in start of
transaction and implicit commit before previous WSREP internal data is
cleared.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
because the name was misleading, it counts not threads, but THDs,
and as THD_count is the only way to increment/decrement it, it
could as well be declared inside THD_count.