Problem:
The problem happened because of a conceptual flaw in the server code:
a. The table level CHARSET/COLLATE clause affected all data types,
including numeric and temporal ones:
CREATE TABLE t1 (a INT) CHARACTER SET utf8 [COLLATE utf8_general_ci];
In the above example, the Column_definition_attributes
(and then the FRM record) for the column "a" erroneously inherited
"utf8" as its character set.
b. The "ALTER TABLE t1 CONVERT TO CHARACTER SET csname" statement
also erroneously affected Column_definition_attributes::charset
for numeric and temporal data types and wrote "csname" as their
character set into FRM files.
So now we have arbitrary non-relevant charset ID values for numeric
and temporal data types in all FRM files in the world :)
The code in the server and the other engines did not seem to be affected
by this flaw. Only InnoDB inplace ALTER was affected.
Solution:
Fixing the code in the way that only character string data types
(CHAR,VARCHAR,TEXT,ENUM,SET):
- inherit the table level CHARSET/COLLATE clause
- get the charset value according to "CONVERT TO CHARACTER SET csname".
Numeric and temporal data types now always get &my_charset_numeric
in Column_definition_attributes::charset and always write its ID into FRM files:
- no matter what the table level CHARSET/COLLATE clause is, and
- no matter what "CONVERT TO CHARACTER SET" says.
Details:
1. Adding helper classes to pass small parts of HA_CREATE_INFO
into Type_handler methods:
- Column_derived_attributes - to pass table level CHARSET/COLLATE,
so columns that do not have explicit CHARSET/COLLATE clauses
can derive them from the table level, e.g.
CREATE TABLE t1 (a VARCHAR(1), b CHAR(1)) CHARACTER SET utf8;
- Column_bulk_alter_attributes - to pass bulk attribute changes
generated by the ALTER related code. These bulk changes affect
multiple columns at the same time:
ALTER TABLE ... CONVERT TO CHARACTER SET csname;
Note, passing the whole HA_CREATE_INFO directly to Type_handler
would not be good: HA_CREATE_INFO is huge and would need not desired
dependencies in sql_type.h and sql_type.cc. The Type_handler API should
use smallest possible data types!
2. Type_handler::Column_definition_prepare_stage1() is now responsible
to set Column_definition::charset properly, according to the data type,
for example:
- For string data types, Column_definition_attributes::charset is set from
the table level CHARSET/COLLATE clause (if not specified explicitly in
the column definition).
- For numeric and temporal fields, Column_definition_attributes::charset is
set to &my_charset_numeric, no matter what the table level
CHARSET/COLLATE says.
- For GEOMETRY, Column_definition_attributes::charset is set to
&my_charset_bin, no matter what the table level CHARSET/COLLATE says.
Previously this code (setting `charset`) was outside of of
Column_definition_prepare_stage1(), namely in
mysql_prepare_create_table(), and was erroneously called for
all data types.
3. Adding Type_handler::Column_definition_bulk_alter(), to handle
"ALTER TABLE .. CONVERT TO". Previously this code was inside
get_sql_field_charset() and was erroneously called for all data types.
4. Removing the Schema_specification_st parameter from
Type_handler::Column_definition_redefine_stage1().
Column_definition_attributes::charset is now fully properly initialized by
Column_definition_prepare_stage1(). So we don't need access to the
table level CHARSET/COLLATE clause in Column_definition_redefine_stage1()
any more.
5. Other changes:
- Removing global function get_sql_field_charset()
- Moving the part of the former get_sql_field_charset(), which was
responsible to inherit the table level CHARSET/COLLATE clause to
new methods:
-- Column_definition_attributes::explicit_or_derived_charset() and
-- Column_definition::prepare_charset_for_string().
This code is only needed for string data types.
Previously it was erroneously called for all data types.
- Moving another part, which was responsible to apply the
"CONVERT TO" clause, to
Type_handler_general_purpose_string::Column_definition_bulk_alter().
- Replacing the call for get_sql_field_charset() in sql_partition.cc
to sql_field->explicit_or_derived_charset() - it is perfectly enough.
The old code was redundant: get_sql_field_charset() was called from
sql_partition.cc only when there were no a "CONVERT TO CHARACTER SET"
clause involved, so its purpose was only to inherit the table
level CHARSET/COLLATE clause.
- Moving the code handling the BINCMP_FLAG flag from
mysql_prepare_create_table() to
Column_definition::prepare_charset_for_string():
This code is responsible to resolve the BINARY comparison style
into the corresponding _bin collation, to do the following transparent
rewrite:
CREATE TABLE t1 (a VARCHAR(10) BINARY) CHARSET utf8; ->
CREATE TABLE t1 (a VARCHAR(10) CHARACTER SET utf8 COLLATE utf8_bin);
This code is only needed for string data types.
Previously it was erroneously called for all data types.
6. Renaming Table_scope_and_contents_source_pod_st::table_charset
to alter_table_convert_to_charset, because the only purpose it's used for
is handlering "ALTER .. CONVERT". The new name is much more self-descriptive.
The assertion failed in handler::ha_reset upon SELECT under
READ UNCOMMITTED from table with index on virtual column.
This was the debug-only failure, though the problem is mush wider:
* MY_BITMAP is a structure containing my_bitmap_map, the latter is a raw
bitmap.
* read_set, write_set and vcol_set of TABLE are the pointers to MY_BITMAP
* The rest of MY_BITMAPs are stored in TABLE and TABLE_SHARE
* The pointers to the stored MY_BITMAPs, like orig_read_set etc, and
sometimes all_set and tmp_set, are assigned to the pointers.
* Sometimes tmp_use_all_columns is used to substitute the raw bitmap
directly with all_set.bitmap
* Sometimes even bitmaps are directly modified, like in
TABLE::update_virtual_field(): bitmap_clear_all(&tmp_set) is called.
The last three bullets in the list, when used together (which is mostly
always) make the program flow cumbersome and impossible to follow,
notwithstanding the errors they cause, like this MDEV-17556, where tmp_set
pointer was assigned to read_set, write_set and vcol_set, then its bitmap
was substituted with all_set.bitmap by dbug_tmp_use_all_columns() call,
and then bitmap_clear_all(&tmp_set) was applied to all this.
To untangle this knot, the rule should be applied:
* Never substitute bitmaps! This patch is about this.
orig_*, all_set bitmaps are never substituted already.
This patch changes the following function prototypes:
* tmp_use_all_columns, dbug_tmp_use_all_columns
to accept MY_BITMAP** and to return MY_BITMAP * instead of my_bitmap_map*
* tmp_restore_column_map, dbug_tmp_restore_column_maps to accept
MY_BITMAP* instead of my_bitmap_map*
These functions now will substitute read_set/write_set/vcol_set directly,
and won't touch underlying bitmaps.
Cause: shared federatedx_io cannot store table-specific data.
Fix: move current row reference `federatedx_io_mysql::current` to
ha_federatedx.
FederatedX connection (represented by federatedx_io) is stored into
federatedx_txn::txn_list of per-server connections (see
federatedx_txn::acquire()). federatedx_txn object is stored into THD
(see ha_federatedx::external_lock()). When multiple handlers acquire
FederatedX connection they get single federatedx_io instance. Multiple
handlers do their operation via federatedx_io_mysql::mark_position()
and federatedx_io_mysql::fetch_row() in arbitrarty manner. They access
the same federatedx_io_mysql instance and same MYSQL_ROWS *current
pointer, so one handler disrupts the work of the other.
Related to "MDEV-14551 Can't find record in table on multi-table update
with ORDER BY".
Final added to:
- All reasonable classes inhereted from Field
- All classes inhereted from Protocol
- Almost all Handler classes
- Some important Item classes
The stripped size of mariadbd is just 4K smaller, but several object files
showed notable improvements in common execution paths.
- Checked field.o and item_sum.o
Other things:
- Added 'override' to a few class functions touched by this patch.
- Removed 'virtual' from a new class functions that had/got 'override'
- Changed Protocol_discard to inherit from Protocol instad of Protocol_text
The used code is largely based on code from Tencent
The problem is that in some rare cases there may be a conflict between .frm
files and the files in the storage engine. In this case the DROP TABLE
was not able to properly drop the table.
Some MariaDB/MySQL forks has solved this by adding a FORCE option to
DROP TABLE. After some discussion among MariaDB developers, we concluded
that users expects that DROP TABLE should always work, even if the
table would not be consistent. There should not be a need to use a
separate keyword to ensure that the table is really deleted.
The used solution is:
- If a .frm table doesn't exists, try dropping the table from all storage
engines.
- If the .frm table exists but the table does not exist in the engine
try dropping the table from all storage engines.
- Update storage engines using many table files (.CVS, MyISAM, Aria) to
succeed with the drop even if some of the files are missing.
- Add HTON_AUTOMATIC_DELETE_TABLE to handlerton's where delete_table()
is not needed and always succeed. This is used by ha_delete_table_force()
to know which handlers to ignore when trying to drop a table without
a .frm file.
The disadvantage of this solution is that a DROP TABLE on a non existing
table will be a bit slower as we have to ask all active storage engines
if they know anything about the table.
Other things:
- Added a new flag MY_IGNORE_ENOENT to my_delete() to not give an error
if the file doesn't exist. This simplifies some of the code.
- Don't clear thd->error in ha_delete_table() if there was an active
error. This is a bug fix.
- handler::delete_table() will not abort if first file doesn't exists.
This is bug fix to handle the case when a drop table was aborted in
the middle.
- Cleaned up mysql_rm_table_no_locks() to ensure that if_exists uses
same code path as when it's not used.
- Use non_existing_Table_error() to detect if table didn't exists.
Old code used different errors tests in different position.
- Table_triggers_list::drop_all_triggers() now drops trigger file if
it can't be parsed instead of leaving it hanging around (bug fix)
- InnoDB doesn't anymore print error about .frm file out of sync with
InnoDB directory if .frm file does not exists. This change was required
to be able to try to drop an InnoDB file when .frm doesn't exists.
- Fixed bug in mi_delete_table() where the .MYD file would not be dropped
if the .MYI file didn't exists.
- Fixed memory leak in Mroonga when deleting non existing table
- Fixed memory leak in Connect when deleting non existing table
Bugs fixed introduced by the original version of this commit:
MDEV-22826 Presence of Spider prevents tables from being force-deleted from
other engines
Respect system fields in NO_ZERO_DATE mode.
This is the subject for refactoring in MDEV-19597
Conflict resolution from 7d5223310789f967106d86ce193ef31b315ecff0
Prototype change:
- virtual ha_rows records_in_range(uint inx, key_range *min_key,
- key_range *max_key)
+ virtual ha_rows records_in_range(uint inx, const key_range *min_key,
+ const key_range *max_key,
+ page_range *res)
The handler can ignore the page_range parameter. In the case the handler
updates the parameter, the optimizer can deduce the following:
- If previous range's last key is on the same block as next range's first
key
- If the current key range is in one block
- We can also assume that the first and last block read are cached!
This can be used for a better calculation of IO seeks when we
estimate the cost of a range index scan.
The parameter is fully implemented for MyISAM, Aria and InnoDB.
A separate patch will update handler::multi_range_read_info_const() to
take the benefits of this change and also remove the double
records_in_range() calls that are not anymore needed.
Backport to 10.4:
- Don't try to push down SELECTs that have a side effect
- In case the storage engine did support pushdown of SELECT with an INTO
clause, write the rows we've got from it into select->join->result,
and not thd->protocol. This way, SELECT ... INTO ... FROM
smart_engine_table will put the result into where instructed, and
NOT send it to the client.
- Don't try to push down SELECTs that have a side effect
- In case the storage engine did support pushdown of SELECT with an INTO
clause, write the rows we've got from it into select->join->result,
and not thd->protocol. This way, SELECT ... INTO ... FROM
smart_engine_table will put the result into where instructed, and
NOT send it to the client.
MDEV-19486 and one more similar bug appeared because handler::write_row() interface
welcomes to modify buffer by storage engine. But callers are not ready for that
thus bugs are possible in future.
handler::write_row():
handler::ha_write_row(): make argument const
Use thd_get_ha_data()/thd_set_ha_data() which protect against plugin
removal until it has THD ha_data.
Do not reset THD ha_data in ha_federatedx::disconnect(), cleaner approach
is to let ha_close_connection() do it.
Part of MDEV-19515 - Improve connect speed
MDEV-17631 select_handler for a full query pushdown
Interfaces + Proof of Concept for federatedx with test cases.
The interfaces have been developed for integration of ColumnStore engine.
Part of MDEV-5336 Implement LOCK FOR BACKUP
- Added new locks to MDL_BACKUP for all stages of backup locks and
a new MDL lock needed for backup stages.
- Renamed MDL_BACKUP_STMT to MDL_BACKUP_DDL
- flush_tables() takes a new parameter that decides what should be flushed.
- InnoDB, Aria (transactional tables with checksums), Blackhole, Federated
and Federatedx tables are marked to be safe for online backup. We are
using MDL_BACKUP_TRANS_DML instead of MDL_BACKUP_DML locks for these
which allows any DML's to proceed for these tables during the whole
backup process until BACKUP STAGE COMMIT which will block the final
commit.