The issue here is that the window function execution is not called for the correct join tab, when we have GROUP BY
where we create extra temporary tables then we need to call window function execution for the last join tab. For doing
so the current code does not take into account the JOIN::aggr_tables.
Fixed by introducing a new function JOIN::total_join_tab_cnt that takes in account the temporary tables also.
The assertion failure was caused by an incorrectly set read_set for
functions in the ORDER BY clause in part of a union, when we are using
a mergeable view and the order by clause can be skipped (removed).
An order by clause can be skipped if it's part of one part of the UNION as
the result set is not meaningful when multiple SELECT queries are UNIONed. The
server is aware of this optimization and tries to remove the order by
clause before JOIN::prepare. The problem is that we need to throw an
error when the ORDER BY clause contains invalid columns. To do this, we
attempt resolving the ORDER BY expressions, then subsequently drop them
if resolution succeeded. However, ORDER BY resolution had the side
effect of adding the expressions to the all_fields list, which is used
to construct temporary tables to store the result. We may be ignoring
the ORDER BY statement, but the tmp table still tried to compute the
values for the expressions, even if the columns are never used.
The assertion only shows itself if the order by clause contains members
which were not previously in the select list, and are part of a
function.
There is an additional question as to why this only manifests when using
VIEWS and not when using a regular table. The difference lies with the
"reset" of the read_set for the temporary table during
SELECT_LEX::update_used_tables() in JOIN::optimize(). The changes
introduced in fdf789a7ea cleared the
read_set when a mergeable view is encountered in the TABLE_LIST
defintion.
Upon initial order_list resolution, the table's read_set is updated
correctly. JOIN::optimize() will only reset the read_set if it
encounters a VIEW. Since we no longer have ORDER BY clause in
JOIN::optimize() we never get to correctly update the read_set again.
Other relevant commit by Timour, which first introduced the order
resolution when we "can_skip_sort_order":
883af99e7d
Solution:
Don't add the resolved ORDER BY elements to all_fields. We only resolve
them to check if an error should be returned for the query. Ignore them
completely otherwise.
in joined table + GROUP BY + GROUP_CONCAT + HAVING + ORDER BY
[by field from HAVING] + 1 row expected
The fix is actually a port of the fix for bug #17055185 from
mysql code line (see commit f289aeeef0743508ff87211084453b3b88a6d017
by Mithun C Y into mysql-5.6). The test case for the bug #17055185
was also ported.
If the optimizer chose an execution plan where
a semi-join nest were materialized and the
result of materialization was scanned to access
other tables by ref access it could build a key
over columns of the tables from the nest that
were actually inaccessible.
The patch performs a proper check whether a key
that uses columns of the tables from a materialized
semi-join nest can be employed to access outer tables.
The usage of windows functions when all tables were optimized away
by min/max optimization were not supported. As result a result,
the queries that used window functions with min/max aggregation
over the whole table returned wrong result sets.
The patch fixed this problem.
Define my_thread_id as an unsigned type, to avoid mismatch with
ulonglong. Change some parameters to this type.
Use size_t in a few more places.
Declare many flag constants as unsigned to avoid sign mismatch
when shifting bits or applying the unary ~ operator.
When applying the unary ~ operator to enum constants, explictly
cast the result to an unsigned type, because enum constants can
be treated as signed.
In InnoDB, change the source code line number parameters from
ulint to unsigned type. Also, make some InnoDB functions return
a narrower type (unsigned or uint32_t instead of ulint;
bool instead of ibool).
The issue was that JOIN::rollup_write_data() used
JOIN::tmp_table_param::[start_]recinfo, which had uninitialized data.
These fields have uninitialized data, because JOIN::tmp_table_param
currently only stores some grouping-related data fields. The data about
the work (temporary) tables themselves is stored in
join->join_tab[...].tmp_table_param.
The fix is to make JOIN::rollup_write_data follow this convention
and look at the right TMP_TABLE_PARAM object
JOIN_CACHE's were initialized in check_join_cache_usage()
from make_join_readinfo(). After that make_join_readinfo() was looking
whether it's possible to use keyread. Later, after make_join_readinfo(),
optimizer decided whether to use filesort. And even later, at the
execution time, from join_read_first(), keyread was actually enabled.
The problem is, that if a query uses a vcol, base columns that it
depends on are automatically added to the read_set - because they're
needed to calculate the vcol. But if we're doing keyread, vcol is taken
from the index, not calculated, and base columns do not need to be
in the read set (even should not be - as they aren't getting values).
The bug was that JOIN_CACHE used read_set with base columns,
they were not read because of keyread, so it was caching garbage.
So read_set is only known after the keyread was decided. And after the
filesort was decided, as filesort doesn't use keyread. But
check_join_cache_usage() needs to be done in make_join_readinfo(),
as the code below depends on these checks,
Fix: keep JOIN_CACHE checks where they were, but move initialization
down to the very end of JOIN::optimize_inner. If keyread was enabled,
update the read_set to include only columns that are part of the index.
Copy the keyread logic from join_read_first() to happen at optimize time.
- Tabular EXPLAIN now prints "RECURSIVE UNION".
- There is a basic implementation of EXPLAIN FORMAT=JSON.
- it produces "recursive_union" JSON struct
- No other details or ANALYZE support, yet.
Temporary tables created for recursive CTE
were instantiated at the prepare phase. As
a result these temporary tables missed
indexes for look-ups and optimizer could not
use them.
Variant #4 of the fix.
Make ORDER BY optimization functions take into account multiple
equalities. This is done in several places:
- remove_const() checks whether we can sort the first table in the
join, or we need to put rows into temp.table and then sort.
- test_if_order_by_key() checks whether there are indexes that
can be used to produce the required ordering
- make_unireg_sortorder() constructs sort criteria for filesort.
This bug revealed a serious problem: if the same partition list
was used in two window specifications then the temporary table created
to calculate window functions contained fields for two identical
partitions. This problem was fixed as well.
- Rename Window_funcs_computation to Window_funcs_computation_step
- Introduce Window_func_sort which invokes filesort and then
invokes computation of all window functions that use this ordering.
- Expose Window functions' sort operations in EXPLAIN|ANALYZE FORMAT=JSON
Added class Window_funcs_computation, with setup() method to setup
execution, and exec() to run window function computation.
setup() is currently trivial. In the future, it is expected to optimize
the number of sorting operations and passes that are done over the temp.
table.
filesort and init_read_record() for the same table.
This will simplify code for WINDOW FUNCTIONS (MDEV-6115)
- Filesort_info renamed to SORT_INFO and moved to filesort.h
- filesort now returns SORT_INFO
- init_read_record() now takes a SORT_INFO parameter.
- unique declaration is moved to uniques.h
- subselect caching of buffers is now more explicit than before
- filesort_buffer is now reusable even if rec_length has changed.
- filsort_free_buffers() and free_io_cache() calls are removed
- Remove one malloc() when using get_addon_fields()
Other things:
- Added --debug-assert-on-not-freed-memory option to make it easier to
debug some not-freed-memory issues.