Historically, InnoDB supported a buggy page checksum algorithm that did not
compute a checksum over the full page. Later, well before MySQL 4.1
introduced .ibd files and the innodb_file_per_table option, the algorithm
was corrected and the first 4 bytes of each page were redefined to be
a checksum.
The original checksum was so slow that an option to disable page checksum
was introduced for benchmarketing purposes.
The Intel Nehalem microarchitecture introduced the SSE4.2 instruction set
extension, which includes instructions for faster computation of CRC-32C.
In MySQL 5.6 (and MariaDB 10.0), innodb_checksum_algorithm=crc32 was
implemented to make of that. As that option was changed to be the default
in MySQL 5.7, a bug was found on big-endian platforms and some work-around
code was added to weaken that checksum further. MariaDB disables that
work-around by default since MDEV-17958.
Later, SIMD-accelerated CRC-32C has been implemented in MariaDB for POWER
and ARM and also for IA-32/AMD64, making use of carry-less multiplication
where available.
Long story short, innodb_checksum_algorithm=crc32 is faster and more secure
than the pre-MySQL 5.6 checksum, called innodb_checksum_algorithm=innodb.
It should have removed any need to use innodb_checksum_algorithm=none.
The setting innodb_checksum_algorithm=crc32 is the default in
MySQL 5.7 and MariaDB Server 10.2, 10.3, 10.4. In MariaDB 10.5,
MDEV-19534 made innodb_checksum_algorithm=full_crc32 the default.
It is even faster and more secure.
The default settings in MariaDB do allow old data files to be read,
no matter if a worse checksum algorithm had been used.
(Unfortunately, before innodb_checksum_algorithm=full_crc32,
the data files did not identify which checksum algorithm is being used.)
The non-default settings innodb_checksum_algorithm=strict_crc32 or
innodb_checksum_algorithm=strict_full_crc32 would only allow CRC-32C
checksums. The incompatibility with old data files is why they are
not the default.
The newest server not to support innodb_checksum_algorithm=crc32
were MySQL 5.5 and MariaDB 5.5. Both have reached their end of life.
A valid reason for using innodb_checksum_algorithm=innodb could have
been the ability to downgrade. If it is really needed, data files
can be converted with an older version of the innochecksum utility.
Because there is no good reason to allow data files to be written
with insecure checksums, we will reject those option values:
innodb_checksum_algorithm=none
innodb_checksum_algorithm=innodb
innodb_checksum_algorithm=strict_none
innodb_checksum_algorithm=strict_innodb
Furthermore, the following innochecksum options will be removed,
because only strict crc32 will be supported:
innochecksum --strict-check=crc32
innochecksum -C crc32
innochecksum --write=crc32
innochecksum -w crc32
If a user wishes to convert a data file to use a different checksum
(so that it might be used with the no-longer-supported
MySQL 5.5 or MariaDB 5.5, which do not support IMPORT TABLESPACE
nor system tablespace format changes that were made in MariaDB 10.3),
then the innochecksum tool from MariaDB 10.2, 10.3, 10.4, 10.5 or
MySQL 5.7 can be used.
Reviewed by: Thirunarayanan Balathandayuthapani
This is a follow-up task to MDEV-12026, which introduced
innodb_checksum_algorithm=full_crc32 and a simpler page format.
MDEV-12026 did not enable full_crc32 for page_compressed tables,
which we will be doing now.
This is joint work with Thirunarayanan Balathandayuthapani.
For innodb_checksum_algorithm=full_crc32 we change the
page_compressed format as follows:
FIL_PAGE_TYPE: The most significant bit will be set to indicate
page_compressed format. The least significant bits will contain
the compressed page size, rounded up to a multiple of 256 bytes.
The checksum will be stored in the last 4 bytes of the page
(whether it is the full page or a page_compressed page whose
size is determined by FIL_PAGE_TYPE), covering all preceding
bytes of the page. If encryption is used, then the page will
be encrypted between compression and computing the checksum.
For page_compressed, FIL_PAGE_LSN will not be repeated at
the end of the page.
FSP_SPACE_FLAGS (already implemented as part of MDEV-12026):
We will store the innodb_compression_algorithm that may be used
to compress pages. Previously, the choice of algorithm was written
to each compressed data page separately, and one would be unable
to know in advance which compression algorithm(s) are used.
fil_space_t::full_crc32_page_compressed_len(): Determine if the
page_compressed algorithm of the tablespace needs to know the
exact length of the compressed data. If yes, we will reserve and
write an extra byte for this right before the checksum.
buf_page_is_compressed(): Determine if a page uses page_compressed
(in any innodb_checksum_algorithm).
fil_page_decompress(): Pass also fil_space_t::flags so that the
format can be determined.
buf_page_is_zeroes(): Check if a page is full of zero bytes.
buf_page_full_crc32_is_corrupted(): Renamed from
buf_encrypted_full_crc32_page_is_corrupted(). For full_crc32,
we always simply validate the checksum to the page contents,
while the physical page size is explicitly specified by an
unencrypted part of the page header.
buf_page_full_crc32_size(): Determine the size of a full_crc32 page.
buf_dblwr_check_page_lsn(): Make this a debug-only function, because
it involves potentially costly lookups of fil_space_t.
create_table_info_t::check_table_options(),
ha_innobase::check_if_supported_inplace_alter(): Do allow the creation
of SPATIAL INDEX with full_crc32 also when page_compressed is used.
commit_cache_norebuild(): Preserve the compression algorithm when
updating the page_compression_level.
dict_tf_to_fsp_flags(): Set the flags for page compression algorithm.
FIXME: Maybe there should be a table option page_compression_algorithm
and a session variable to back it?
MariaDB data-at-rest encryption (innodb_encrypt_tables)
had repurposed the same unused data field that was repurposed
in MySQL 5.7 (and MariaDB 10.2) for the Split Sequence Number (SSN)
field of SPATIAL INDEX. Because of this, MariaDB was unable to
support encryption on SPATIAL INDEX pages.
Furthermore, InnoDB page checksums skipped some bytes, and there
are multiple variations and checksum algorithms. By default,
InnoDB accepts all variations of all algorithms that ever existed.
This unnecessarily weakens the page checksums.
We hereby introduce two more innodb_checksum_algorithm variants
(full_crc32, strict_full_crc32) that are special in a way:
When either setting is active, newly created data files will
carry a flag (fil_space_t::full_crc32()) that indicates that
all pages of the file will use a full CRC-32C checksum over the
entire page contents (excluding the bytes where the checksum
is stored, at the very end of the page). Such files will always
use that checksum, no matter what the parameter
innodb_checksum_algorithm is assigned to.
For old files, the old checksum algorithms will continue to be
used. The value strict_full_crc32 will be equivalent to strict_crc32
and the value full_crc32 will be equivalent to crc32.
ROW_FORMAT=COMPRESSED tables will only use the old format.
These tables do not support new features, such as larger
innodb_page_size or instant ADD/DROP COLUMN. They may be
deprecated in the future. We do not want an unnecessary
file format change for them.
The new full_crc32() format also cleans up the MariaDB tablespace
flags. We will reserve flags to store the page_compressed
compression algorithm, and to store the compressed payload length,
so that checksum can be computed over the compressed (and
possibly encrypted) stream and can be validated without
decrypting or decompressing the page.
In the full_crc32 format, there no longer are separate before-encryption
and after-encryption checksums for pages. The single checksum is
computed on the page contents that is written to the file.
We do not make the new algorithm the default for two reasons.
First, MariaDB 10.4.2 was a beta release, and the default values
of parameters should not change after beta. Second, we did not
yet implement the full_crc32 format for page_compressed pages.
This will be fixed in MDEV-18644.
This is joint work with Marko Mäkelä.
Remove the bug-compatible crc32 algorithm variant that was added
to allow an upgrade from data files from big-endian systems where
innodb_checksum_algorithm=crc32 was used on MySQL 5.6
or MariaDB 10.0 or 10.1.
Affected users should be able to recompute page checksums using
innochecksum.
In MySQL 5.7, it was noticed that files are not portable between
big-endian and little-endian processor architectures
(such as SPARC and x86), because the original implementation of
innodb_checksum_algorithm=crc32 was not byte order agnostic.
A byte order agnostic implementation of innodb_checksum_algorithm=crc32
was only added to MySQL 5.7, not backported to 5.6. Consequently,
MariaDB Server versions 10.0 and 10.1 only contain the CRC-32C
implementation that works incorrectly on big-endian architectures,
and MariaDB Server 10.2.2 got the byte-order agnostic CRC-32C
implementation from MySQL 5.7.
MySQL 5.7 introduced a "legacy crc32" variant that is functionally
equivalent to the big-endian version of the original crc32 implementation.
Thanks to this variant, old data files can be transferred from big-endian
systems to newer versions.
Introducing new variants of checksum algorithms (without introducing
new names for them, or something on the pages themselves to identify
the algorithm) generally is a bad idea, because each checksum algorithm
is like a lottery ticket. The more algorithms you try, the more likely
it will be for the checksum to match on a corrupted page.
So, essentially MySQL 5.7 weakened innodb_checksum_algorithm=crc32,
and MariaDB 10.2.2 inherited this weakening.
We introduce a build option that together with MDEV-17957
makes innodb_checksum_algorithm=strict_crc32 strict again
by only allowing one variant of the checksum to match.
WITH_INNODB_BUG_ENDIAN_CRC32: A new cmake option for enabling the
bug-compatible "legacy crc32" checksum. This is only enabled on
big-endian systems by default, to facilitate an upgrade from
MariaDB 10.0 or 10.1. Checked by #ifdef INNODB_BUG_ENDIAN_CRC32.
ut_crc32_byte_by_byte: Remove (unused function).
legacy_big_endian_checksum: Remove. This variable seems to have
unnecessarily complicated the logic. When the weakening is enabled,
we must always fall back to the buggy checksum.
buf_page_check_crc32(): A helper function to compute one or
two CRC-32C variants.
Also, related to MDEV-15522, MDEV-17304, MDEV-17835,
remove the Galera xtrabackup tests, because xtrabackup never worked
with MariaDB Server 10.3 due to InnoDB redo log format changes.
Always read full page 0 to determine does tablespace contain
encryption metadata. Tablespaces that are page compressed or
page compressed and encrypted do not compare checksum as
it does not exists. For encrypted tables use checksum
verification written for encrypted tables and normal tables
use normal method.
buf_page_is_checksum_valid_crc32
buf_page_is_checksum_valid_innodb
buf_page_is_checksum_valid_none
Add Innochecksum logging to file
buf_page_is_corrupted
Remove ib_logf and page_warn_strict_checksum
calls in innochecksum compilation. Add innochecksum
logging to file.
fil0crypt.cc fil0crypt.h
Modify to be able to use in innochecksum compilation and
move fil_space_verify_crypt_checksum to end of the file.
Add innochecksum logging to file.
univ.i
Add innochecksum strict_verify, log_file and cur_page_num
variables as extern.
page_zip_verify_checksum
Add innochecksum logging to file.
innochecksum.cc
Lot of changes most notable able to read encryption
metadata from page 0 of the tablespace.
Added test case where we corrupt intentionally
FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION (encryption key version)
FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION+4 (post encryption checksum)
FIL_DATA+10 (data)
This only merges MDEV-12253, adapting it to MDEV-12602 which is already
present in 10.2 but not yet in the 10.1 revision that is being merged.
TODO: Error handling in crash recovery needs to be improved.
If a page cannot be decrypted (or read), we should cleanly abort
the startup. If innodb_force_recovery is specified, we should
ignore the problematic page and apply redo log to other pages.
Currently, the test encryption.innodb-redo-badkey randomly fails
like this (the last messages are from cmake -DWITH_ASAN):
2017-05-05 10:19:40 140037071685504 [Note] InnoDB: Starting crash recovery from checkpoint LSN=1635994
2017-05-05 10:19:40 140037071685504 [ERROR] InnoDB: Missing MLOG_FILE_NAME or MLOG_FILE_DELETE before MLOG_CHECKPOINT for tablespace 1
2017-05-05 10:19:40 140037071685504 [ERROR] InnoDB: Plugin initialization aborted at srv0start.cc[2201] with error Data structure corruption
2017-05-05 10:19:41 140037071685504 [Note] InnoDB: Starting shutdown...
i=================================================================
==5226==ERROR: AddressSanitizer: attempting free on address which was not malloc()-ed: 0x612000018588 in thread T0
#0 0x736750 in operator delete(void*) (/mariadb/server/build/sql/mysqld+0x736750)
#1 0x1e4833f in LatchCounter::~LatchCounter() /mariadb/server/storage/innobase/include/sync0types.h:599:4
#2 0x1e480b8 in LatchMeta<LatchCounter>::~LatchMeta() /mariadb/server/storage/innobase/include/sync0types.h:786:17
#3 0x1e35509 in sync_latch_meta_destroy() /mariadb/server/storage/innobase/sync/sync0debug.cc:1622:3
#4 0x1e35314 in sync_check_close() /mariadb/server/storage/innobase/sync/sync0debug.cc:1839:2
#5 0x1dfdc18 in innodb_shutdown() /mariadb/server/storage/innobase/srv/srv0start.cc:2888:2
#6 0x197e5e6 in innobase_init(void*) /mariadb/server/storage/innobase/handler/ha_innodb.cc:4475:3
Contains also:
MDEV-10549 mysqld: sql/handler.cc:2692: int handler::ha_index_first(uchar*): Assertion `table_share->tmp_table != NO_TMP_TABLE || m_lock_type != 2' failed. (branch bb-10.2-jan)
Unlike MySQL, InnoDB still uses THR_LOCK in MariaDB
MDEV-10548 Some of the debug sync waits do not work with InnoDB 5.7 (branch bb-10.2-jan)
enable tests that were fixed in MDEV-10549
MDEV-10548 Some of the debug sync waits do not work with InnoDB 5.7 (branch bb-10.2-jan)
fix main.innodb_mysql_sync - re-enable online alter for partitioned innodb tables
Contains also
MDEV-10547: Test multi_update_innodb fails with InnoDB 5.7
The failure happened because 5.7 has changed the signature of
the bool handler::primary_key_is_clustered() const
virtual function ("const" was added). InnoDB was using the old
signature which caused the function not to be used.
MDEV-10550: Parallel replication lock waits/deadlock handling does not work with InnoDB 5.7
Fixed mutexing problem on lock_trx_handle_wait. Note that
rpl_parallel and rpl_optimistic_parallel tests still
fail.
MDEV-10156 : Group commit tests fail on 10.2 InnoDB (branch bb-10.2-jan)
Reason: incorrect merge
MDEV-10550: Parallel replication can't sync with master in InnoDB 5.7 (branch bb-10.2-jan)
Reason: incorrect merge
This patch ports the work that facebook has performed
to make innochecksum handle compressed tables.
the basic idea is to use actual innodb-code to perform
checksum verification rather than duplicating in innochecksum.cc.
to make this work, innodb code has been annotated with
lots of #ifndef UNIV_INNOCHECKSUM so that it can be
compiled outside of storage/innobase.
A new testcase is also added that verifies that innochecksum
works on compressed/non-compressed tables.
Merged from commit fabc79d2ea976c4ff5b79bfe913e6bc03ef69d42
from https://code.google.com/p/google-mysql/
The actual steps to produce this patch are:
take innochecksum from 5.6.14
apply changes in innodb from facebook patches needed to make innochecksum compile
apply changes in innochecksum from facebook patches
add handcrafted testcase
The referenced facebook patches used are:
91e25120e7847fe76ea51135628a5a4dbf7c240c