Implementation of mysql_multi_update did not call multi_update::send_error method in some cases
(see the test reported on bug page and test cases in changeset).
Fixed with deploying the method, ::send_error() is refined to get binlogging code which works whenever
there is modified non-transactional table.
thd->no_trans_update.stmt flag is set in to TRUE to ease testing though being the beginning of relative
bug#27417 fix (addresses a part of those issues).
Eliminating two minor issues (small bugs) in multi_update methods.
This patch for multi-update also addresses a part of the issues reported in bug#13270,bug#23333.
The result of the CHECK OPTION condition evaluation over an
updated record and records of merged tables was arbitrary and
dependant on the order of records in the merged tables during
the execution of SELECT statement.
The CHECK OPTION expression was evaluated over expired record
buffers (with arbitrary data in the fields).
Rowids of tables used in the CHECK OPTION expression were
added to temporary table rows. The multi_update::do_updates()
method was modified to restore necessary record buffers
before evaluation of the CHECK OPTION condition.
The reason for the bug was that replaying of a query on slave could not be possible since its event
was recorded with the killed error. Due to the specific of handling INSERT, which per-row-while-loop is
unbreakable to killing, the query on transactional table should have not appeared in binlog unless
there was a call to a stored routine that got interrupted with killing (and then there must be an error
returned out of the loop).
The offered solution added the following rule for binlogging of INSERT that accounts the above
specifics:
For INSERT on transactional-table if the error was not set the only raised flag
is harmless and is ignored via masking out on time of creation of binlog event.
For both table types the combination of raised error and KILLED flag indicates that there
was potentially partial execution on master and consistency is under the question.
In that case the code continues to binlog an event with an appropriate killed error.
The fix relies on the specified behaviour of stored routine that must propagate the error
to the top level query handling if the thd->killed flag was raised in the routine execution.
The patch adds an arg with the default killed-status-unset value to Query_log_event::Query_log_event.
- A race condition caused brief unavailablility when trying to acccess
a table.
- The variable 'grant_option' was removed to resolve the race condition and
to simplify the design pattern. This flag was originally intended to optimize
grant checks.
database.
If a user has a right to update anything in the current database then the
access was granted and further checks of access rights for underlying tables
wasn't done correctly. The check is done before a view is opened and thus no
check of access rights for underlying tables can be carried out.
This allows a user to update through a view a table from another database for
which he hasn't enough rights.
Now the mysql_update() and the mysql_test_update() functions are forces
re-checking of access rights after a view is opened.
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
In multi_update::send_data(), the counter of matched rows was not correctly incremented, when during insertion of a new row to a temporay table it had to be converted from HEAP to MyISAM.
This fix changes the logic to increment the counter of matched rows in the following cases:
1. If the error returned from write_row() is zero.
2. If the error returned from write_row() is non-zero, is neither HA_ERR_FOUND_DUPP_KEY nor HA_ERR_FOUND_DUPP_UNIQUE, and a call to create_myisam_from_heap() succeeds.
In certain cases AFTER UPDATE/DELETE triggers on NDB tables that referenced
subject table didn't see the results of operation which caused invocation
of those triggers. In other words AFTER trigger invoked as result of update
(or deletion) of particular row saw version of this row before update (or
deletion).
The problem occured because NDB handler in those cases postponed actual
update/delete operations to be able to perform them later as one batch.
This fix solves the problem by disabling this optimization for particular
operation if subject table has AFTER trigger for this operation defined.
To achieve this we introduce two new flags for handler::extra() method:
HA_EXTRA_DELETE_CANNOT_BATCH and HA_EXTRA_UPDATE_CANNOT_BATCH.
These are called if there exists AFTER DELETE/UPDATE triggers during a
statement that potentially can generate calls to delete_row()/update_row().
This includes multi_delete/multi_update statements as well as insert statements
that do delete/update as part of an ON DUPLICATE statement.
thd->options' OPTION_STATUS_NO_TRANS_UPDATE bit was not restored at the end of SF() invocation, where
SF() modified non-ta table.
As the result of this artifact it was not possible to detect whether there were any side-effects when
top-level query ends.
If the top level query table was not modified and the bit is lost there would be no binlogging.
Fixed with preserving the bit inside of thd->no_trans_update struct. The struct agregates two bool flags
telling whether the current query and the current transaction modified any non-ta table.
The flags stmt, all are dropped at the end of the query and the transaction.
correct the bitmap_set_bit when a field is timestamp and described
with default CURRENT_TIMESTAMP or on update CURRENT_TIMESTAMP,
then it will reduce a little time cost when the field doesnot need
to write.
Bug 18914 (Calling certain SPs from triggers fail)
Bug 20713 (Functions will not not continue for SQLSTATE VALUE '42S02')
Bug 21825 (Incorrect message error deleting records in a table with a
trigger for inserting)
Bug 22580 (DROP TABLE in nested stored procedure causes strange dependency
error)
Bug 25345 (Cursors from Functions)
This fix resolves a long standing issue originally reported with bug 8407,
which affect the behavior of Stored Procedures, Stored Functions and Trigger
in many different ways, causing symptoms reported by all the bugs listed.
In all cases, the root cause of the problem traces back to 8407 and how the
server locks tables involved with sub statements.
Prior to this fix, the implementation of stored routines would:
- compute the transitive closure of all the tables referenced by a top level
statement
- open and lock all the tables involved
- execute the top level statement
"transitive closure of tables" means collecting:
- all the tables,
- all the stored functions,
- all the views,
- all the table triggers
- all the stored procedures
involved, and recursively inspect these objects definition to find more
references to more objects, until the list of every object referenced does
not grow any more.
This mechanism is known as "pre-locking" tables before execution.
The motivation for locking all the tables (possibly) used at once is to
prevent dead locks.
One problem with this approach is that, if the execution path the code
really takes during runtime does not use a given table, and if the table is
missing, the server would not execute the statement.
This in particular has a major impact on triggers, since a missing table
referenced by an update/delete trigger would prevent an insert trigger to run.
Another problem is that stored routines might define SQL exception handlers
to deal with missing tables, but the server implementation would never give
user code a chance to execute this logic, since the routine is never
executed when a missing table cause the pre-locking code to fail.
With this fix, the internal implementation of the pre-locking code has been
relaxed of some constraints, so that failure to open a table does not
necessarily prevent execution of a stored routine.
In particular, the pre-locking mechanism is now behaving as follows:
1) the first step, to compute the transitive closure of all the tables
possibly referenced by a statement, is unchanged.
2) the next step, which is to open all the tables involved, only attempts
to open the tables added by the pre-locking code, but silently fails without
reporting any error or invoking any exception handler is the table is not
present. This is achieved by trapping internal errors with
Prelock_error_handler
3) the locking step only locks tables that were successfully opened.
4) when executing sub statements, the list of tables used by each statements
is evaluated as before. The tables needed by the sub statement are expected
to be already opened and locked. Statement referencing tables that were not
opened in step 2) will fail to find the table in the open list, and only at
this point will execution of the user code fail.
5) when a runtime exception is raised at 4), the instruction continuation
destination (the next instruction to execute in case of SQL continue
handlers) is evaluated.
This is achieved with sp_instr::exec_open_and_lock_tables()
6) if a user exception handler is present in the stored routine, that
handler is invoked as usual, so that ER_NO_SUCH_TABLE exceptions can be
trapped by stored routines. If no handler exists, then the runtime execution
will fail as expected.
With all these changes, a side effect is that view security is impacted, in
two different ways.
First, a view defined as "select stored_function()", where the stored
function references a table that may not exist, is considered valid.
The rationale is that, because the stored function might trap exceptions
during execution and still return a valid result, there is no way to decide
when the view is created if a missing table really cause the view to be invalid.
Secondly, testing for existence of tables is now done later during
execution. View security, which consist of trapping errors and return a
generic ER_VIEW_INVALID (to prevent disclosing information) was only
implemented at very specific phases covering *opening* tables, but not
covering the runtime execution. Because of this existing limitation,
errors that were previously trapped and converted into ER_VIEW_INVALID are
not trapped, causing table names to be reported to the user.
This change is exposing an existing problem, which is independent and will
be resolved separately.