This patch is the result of running
run-clang-tidy -fix -header-filter=.* -checks='-*,modernize-use-equals-default' .
Code style changes have been done on top. The result of this change
leads to the following improvements:
1. Binary size reduction.
* For a -DBUILD_CONFIG=mysql_release build, the binary size is reduced by
~400kb.
* A raw -DCMAKE_BUILD_TYPE=Release reduces the binary size by ~1.4kb.
2. Compiler can better understand the intent of the code, thus it leads
to more optimization possibilities. Additionally it enabled detecting
unused variables that had an empty default constructor but not marked
so explicitly.
Particular change required following this patch in sql/opt_range.cc
result_keys, an unused template class Bitmap now correctly issues
unused variable warnings.
Setting Bitmap template class constructor to default allows the compiler
to identify that there are no side-effects when instantiating the class.
Previously the compiler could not issue the warning as it assumed Bitmap
class (being a template) would not be performing a NO-OP for its default
constructor. This prevented the "unused variable warning".
Summary of changes
- MD_CTX_SIZE is increased
- EVP_CIPHER_CTX_buf_noconst(ctx) does not work anymore, points
to nobody knows where. The assumption made previously was that
(since the function does not seem to be documented)
was that it points to the last partial source block.
Add own partial block buffer for NOPAD encryption instead
- SECLEVEL in CipherString in openssl.cnf
had been downgraded to 0, from 1, to make TLSv1.0 and TLSv1.1 possible
(according to https://github.com/openssl/openssl/blob/openssl-3.0.0/NEWS.md
even though the manual for SSL_CTX_get_security_level claims that it
should not be necessary)
- Workaround Ssl_cipher_list issue, it now returns TLSv1.3 ciphers,
in addition to what was set in --ssl-cipher
- ctx_buf buffer now must be aligned to 16 bytes with openssl(
previously with WolfSSL only), ot crashes will happen
- updated aes-t , to be better debuggable
using function, rather than a huge multiline macro
added test that does "nopad" encryption piece-wise, to test
replacement of EVP_CIPHER_CTX_buf_noconst
part of MDEV-29000
Using different recommended speedup options for WolfSSL.
- Enable x64 assembly code on Intel.
- in my_crypt.cc, align EVP_CIPHER_CTX buffer, since some members need
alignment of 16 (for AESNI instructions), when assembler is enabled.
- Adjust MY_AES_CTX_SIZE
- Enable fastmath in wolfssl (large integer math).
Apprently, sometimes there will be null pointers with 0 length
passed to the MyCTX::update() function, and will need to return
a valid buffer.
So weaken the assertion, and use a valid pointer for src if it was NULL.
Log_event_writer::encrypt_and_write() can pass NULL pointer as source buffer
for the encryption. WolfSSL EVP_CipherUpdate(), rightfully rejects this
as invalid parameter.
Fix Log_event_writer::encrypt_and_write() and check, with assertion,
that src parameterm is sane in MyCTX::update()
- Add new submodule for WolfSSL
- Build and use wolfssl and wolfcrypt instead of yassl/taocrypt
- Use HAVE_WOLFSSL instead of HAVE_YASSL
- Increase MY_AES_CTX_SIZE, to avoid compile time asserts in my_crypt.cc
(sizeof(EVP_CIPHER_CTX) is larger on WolfSSL)
When HAVE_YASSL is defined (due to cmake -DWITH_SSL=bundled
or otherwise), mysys_ssl/my_crypt.cc will #include "yassl.cc"
from the same directory.
When MariaDB 10.2 or later is compiled with GCC 8 and optimizations
are enabled, then the check
if (iv)
in EVP_CipherInit_ex() can be wrongly optimized away.
The reason appears to be that __attribute__((nonnull)) is attached
to the variable iv, because there is a (no-op) call
memcpy(oiv, iv, ivlen=0) earlier in the code path.
It is possible that this started failing after the code was
refactored in MDEV-10332 (MariaDB 10.2.6). In MariaDB 10.1,
there is a similar memcpy() call in MyCTX_nopad::init(),
but the code appears to work fine.
post-review fixes:
* move all ssl implementation related ifdefs/defines to one file
(ssl_compat.h)
* work around OpenSSL-1.1 desire to malloc every EVP context by
run-time checking that context allocated on the stack is big enough
(openssl.c)
* use newer version of the AWS SDK for OpenSSL 1.1
* use get_dh2048() function as generated by openssl 1.1
(viosslfactories.c)
Initial support
tested against OpenSSL 1.0.1, 1.0.2, 1.1.0, Yassl and LibreSSL
not working on Windows with native SChannel support, due to wrong cipher
mapping: Latter one requires push of CONC-241 fixes.
Please note that OpenSSL 0.9.8 and OpenSSL 1.1.0 will not work: Even if
the build succeeds, test cases will fail with various errors, especially
when using different tls libraries or versions for client and server.
Also, include fixes by Vladislav Vaintroub to the
aws_key_management plugin. The AWS C++ SDK specifically depends on
OPENSSL_LIBRARIES, not generic SSL_LIBRARIES (such as YaSSL).
A GCM encrypted ciphertext must contain an authentication tag with AES_BLOCK_SIZE length, so we need to check that the length of ciphertext is at least AES_BLOCK_SIZE.
Instead of encrypt(src, dst, key, iv) that encrypts all
data in one go, now we have encrypt_init(key,iv),
encrypt_update(src,dst), and encrypt_finish(dst).
This also causes collateral changes in the internal my_crypt.cc
encryption functions and in the encryption service.
There are wrappers to provide the old all-at-once encryption
functionality. But binlog events are often written piecewise,
they'll need the new api.
fix encryption of the last partial block
* now really encrypt it, using key and iv
* support the case of very short plaintext (less than one block)
* recommend aes_ctr over aes_cbc, because the former
doesn't have problems with partial blocks
* no --encryption-algorithm option anymore
* encrypt/decrypt methods in the encryption plugin
* ecnrypt/decrypt methods in the encryption_km service
* file_km plugin has --file-key-management-encryption-algorithm
* debug_km always uses aes_cbc
* example_km changes between aes_cbc and aes_ecb for different key versions