In commit 28325b0863
a compile-time option was introduced to disable the macros
DBUG_ENTER and DBUG_RETURN or DBUG_VOID_RETURN.
The parameter name WITH_DBUG_TRACE would hint that it also
covers DBUG_PRINT statements. Let us do that: WITH_DBUG_TRACE=OFF
shall disable DBUG_PRINT() as well.
A few InnoDB recovery tests used to check that some output from
DBUG_PRINT("ib_log", ...) is present. We can live without those checks.
Reviewed by: Vladislav Vaintroub
Making changes to wsrep_mysqld.h causes large parts of server code to
be recompiled. The reason is that wsrep_mysqld.h is included by
sql_class.h, even tough very little of wsrep_mysqld.h is needed in
sql_class.h. This commit introduces a new header file, wsrep_on.h,
which is meant to be included from sql_class.h, and contains only
macros and variable declarations used to determine whether wsrep is
enabled.
Also, header wsrep.h should only contain definitions that are also
used outside of sql/. Therefore, move WSREP_TO_ISOLATION* and
WSREP_SYNC_WAIT macros to wsrep_mysqld.h.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
As pointed out with MDEV-29308 there are issues with the code as is.
MariaDB is built as C++11 / C99. aligned_alloc() is not guarenteed
to be exposed when building with any mode other than C++17 / C11.
The other *BSD's have their stdlib.h header to expose the function
with C+11 anyway, but the issue exists in the C99 code too, the
build just does not use -Werror. Linux globally defines _GNU_SOURCE
hiding the issue as well.
Adding two levels of optimization:
1. For every bytes pair [00..FF][00..FF] which:
a. consists of two ASCII characters or makes a well-formed two-byte character
b. whose total weight string fits into 4 weights
(concatenated weight string in case of two ASCII characters,
or a single weight string in case of a two-byte character)
c. whose weight is context independent (i.e. does not depend on contractions
or previous context pairs)
store weights in a separate array of MY_UCA_2BYTES_ITEM,
so during scanner_next() we can scan two bytes at a time.
Byte pairs that do not match the conditions a-c are marked in this array
as not applicable for optimization and scanned as before.
2. For every byte pair which is applicable for optimization in #1,
and which produces only one or two weights, store
weights in one more array of MY_UCA_WEIGHT2. So in the beginning
of strnncoll*() we can skip equal prefixes using an even more efficient
loop. This loop consumes two bytes at a time. The loop scans while the
two bytes on both sides produce weight strings of equal length
(i.e. one weight on both sides, or two weight on both sides).
This allows to compare efficiently:
- Context independent sequences consisting of two ASCII characters
- Context independent 2-byte characters
- Contractions consisting of two ASCII characters, e.g. Czech "ch".
- Some tricky cases: "ss" vs "SHARP S"
("ss" produces two weights, 0xC39F also produces two weights)
Adding a hash table for contractions.
The old code iterated through all items in MY_CONTRACTIONS,
and was much slower, especially for those contractions
in the end of the list.
- Added one neutral and 22 tailored (language specific) collations based on
Unicode Collation Algorithm version 14.0.0.
Collations were added for Unicode character sets
utf8mb3, utf8mb4, ucs2, utf16, utf32.
Every tailoring was added with four accent and case
sensitivity flag combinations, e.g:
* utf8mb4_uca1400_swedish_as_cs
* utf8mb4_uca1400_swedish_as_ci
* utf8mb4_uca1400_swedish_ai_cs
* utf8mb4_uca1400_swedish_ai_ci
and their _nopad_ variants:
* utf8mb4_uca1400_swedish_nopad_as_cs
* utf8mb4_uca1400_swedish_nopad_as_ci
* utf8mb4_uca1400_swedish_nopad_ai_cs
* utf8mb4_uca1400_swedish_nopad_ai_ci
- Introducing a conception of contextually typed named collations:
CREATE DATABASE db1 CHARACTER SET utf8mb4;
CREATE TABLE db1.t1 (a CHAR(10) COLLATE uca1400_as_ci);
The idea is that there is no a need to specify the character set prefix
in the new collation names. It's enough to type just the suffix
"uca1400_as_ci". The character set is taken from the context.
In the above example script the context character set is utf8mb4.
So the CREATE TABLE will make a column with the collation
utf8mb4_uca1400_as_ci.
Short collations names can be used in any parts of the SQL syntax
where the COLLATE clause is understood.
- New collations are displayed only one time
(without character set combinations) by these statements:
SELECT * FROM INFORMATION_SCHEMA.COLLATIONS;
SHOW COLLATION;
For example, all these collations:
- utf8mb3_uca1400_swedish_as_ci
- utf8mb4_uca1400_swedish_as_ci
- ucs2_uca1400_swedish_as_ci
- utf16_uca1400_swedish_as_ci
- utf32_uca1400_swedish_as_ci
have just one entry in INFORMATION_SCHEMA.COLLATIONS and SHOW COLLATION,
with COLLATION_NAME equal to "uca1400_swedish_as_ci", which is the suffix
without the character set name:
SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
WHERE COLLATION_NAME LIKE '%uca1400_swedish_as_ci';
+-----------------------+
| COLLATION_NAME |
+-----------------------+
| uca1400_swedish_as_ci |
+-----------------------+
Note, the behaviour of old collations did not change.
Non-unicode collations (e.g. latin1_swedish_ci) and
old UCA-4.0.0 collations (e.g. utf8mb4_unicode_ci)
are still displayed with the character set prefix, as before.
- The structure of the table INFORMATION_SCHEMA.COLLATIONS was changed.
The NOT NULL constraint was removed from these columns:
- CHARACTER_SET_NAME
- ID
- IS_DEFAULT
and from the corresponding columns in SHOW COLLATION.
For example:
SELECT COLLATION_NAME, CHARACTER_SET_NAME, ID, IS_DEFAULT
FROM INFORMATION_SCHEMA.COLLATIONS
WHERE COLLATION_NAME LIKE '%uca1400_swedish_as_ci';
+-----------------------+--------------------+------+------------+
| COLLATION_NAME | CHARACTER_SET_NAME | ID | IS_DEFAULT |
+-----------------------+--------------------+------+------------+
| uca1400_swedish_as_ci | NULL | NULL | NULL |
+-----------------------+--------------------+------+------------+
The NULL value in these columns now means that the collation
is applicable to multiple character sets.
The behavioir of old collations did not change.
Make sure your client programs can handle NULL values in these columns.
- The structure of the table
INFORMATION_SCHEMA.COLLATION_CHARACTER_SET_APPLICABILITY was changed.
Three new NOT NULL columns were added:
- FULL_COLLATION_NAME
- ID
- IS_DEFAULT
New collations have multiple entries in COLLATION_CHARACTER_SET_APPLICABILITY.
The column COLLATION_NAME contains the collation name without the character
set prefix. The column FULL_COLLATION_NAME contains the collation name with
the character set prefix.
Old collations have full collation name in both FULL_COLLATION_NAME and
COLLATION_NAME.
SELECT COLLATION_NAME, FULL_COLLATION_NAME, CHARACTER_SET_NAME, ID, IS_DEFAULT
FROM INFORMATION_SCHEMA.COLLATION_CHARACTER_SET_APPLICABILITY
WHERE FULL_COLLATION_NAME RLIKE '^(utf8mb4|latin1).*swedish.*ci$';
+-----------------------------+-------------------------------------+--------------------+------+------------+
| COLLATION_NAME | FULL_COLLATION_NAME | CHARACTER_SET_NAME | ID | IS_DEFAULT |
+-----------------------------+-------------------------------------+--------------------+------+------------+
| latin1_swedish_ci | latin1_swedish_ci | latin1 | 8 | Yes |
| latin1_swedish_nopad_ci | latin1_swedish_nopad_ci | latin1 | 1032 | |
| utf8mb4_swedish_ci | utf8mb4_swedish_ci | utf8mb4 | 232 | |
| uca1400_swedish_ai_ci | utf8mb4_uca1400_swedish_ai_ci | utf8mb4 | 2368 | |
| uca1400_swedish_as_ci | utf8mb4_uca1400_swedish_as_ci | utf8mb4 | 2370 | |
| uca1400_swedish_nopad_ai_ci | utf8mb4_uca1400_swedish_nopad_ai_ci | utf8mb4 | 2372 | |
| uca1400_swedish_nopad_as_ci | utf8mb4_uca1400_swedish_nopad_as_ci | utf8mb4 | 2374 | |
+-----------------------------+-------------------------------------+--------------------+------+------------+
- Other INFORMATION_SCHEMA queries:
SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLUMNS;
SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.PARAMETERS;
SELECT TABLE_COLLATION FROM INFORMATION_SCHEMA.TABLES;
SELECT DEFAULT_COLLATION_NAME FROM INFORMATION_SCHEMA.SCHEMATA;
SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.ROUTINES;
SELECT COLLATION_CONNECTION FROM INFORMATION_SCHEMA.EVENTS;
SELECT DATABASE_COLLATION FROM INFORMATION_SCHEMA.EVENTS;
SELECT COLLATION_CONNECTION FROM INFORMATION_SCHEMA.ROUTINES;
SELECT DATABASE_COLLATION FROM INFORMATION_SCHEMA.ROUTINES;
SELECT COLLATION_CONNECTION FROM INFORMATION_SCHEMA.TRIGGERS;
SELECT DATABASE_COLLATION FROM INFORMATION_SCHEMA.TRIGGERS;
SELECT COLLATION_CONNECTION FROM INFORMATION_SCHEMA.VIEWS;
display full collation names, including character sets prefix,
for all collations, including new collations.
Corresponding SHOW commands also display full collation names
in collation related columns:
SHOW CREATE TABLE t1;
SHOW CREATE DATABASE db1;
SHOW TABLE STATUS;
SHOW CREATE FUNCTION f1;
SHOW CREATE PROCEDURE p1;
SHOW CREATE EVENT ev1;
SHOW CREATE TRIGGER tr1;
SHOW CREATE VIEW;
These INFORMATION_SCHEMA queries and SHOW statements may change in
the future, to display show collation names.
Implicit weights are now handled according to the Unicode version
(14.0.0 vs earlier versions).
- Adding a new member MY_UCA_INFO::version
- Copy logical positions and the version from "src_uca" to "new_uca"
in init_weight_level().
- Adding a "const MY_UCA_INFO *" parameter to a few functions
to know Unicode version to generate implicit weights accordingly:
- during the collation initialization time, to pages which are
a mixture of explicit and implicit weights
- during comparison time, for fully implicit pages
Summary of changes
- MD_CTX_SIZE is increased
- EVP_CIPHER_CTX_buf_noconst(ctx) does not work anymore, points
to nobody knows where. The assumption made previously was that
(since the function does not seem to be documented)
was that it points to the last partial source block.
Add own partial block buffer for NOPAD encryption instead
- SECLEVEL in CipherString in openssl.cnf
had been downgraded to 0, from 1, to make TLSv1.0 and TLSv1.1 possible
(according to https://github.com/openssl/openssl/blob/openssl-3.0.0/NEWS.md
even though the manual for SSL_CTX_get_security_level claims that it
should not be necessary)
- Workaround Ssl_cipher_list issue, it now returns TLSv1.3 ciphers,
in addition to what was set in --ssl-cipher
- ctx_buf buffer now must be aligned to 16 bytes with openssl(
previously with WolfSSL only), ot crashes will happen
- updated aes-t , to be better debuggable
using function, rather than a huge multiline macro
added test that does "nopad" encryption piece-wise, to test
replacement of EVP_CIPHER_CTX_buf_noconst
part of MDEV-29000
On GNU/Linux, even though the C11 aligned_alloc() appeared in
GNU libc early on, some custom memory allocators did not
implement it until recently. For example, before
gperftools/gperftools@d406f22853
the free() in tcmalloc would fail to free memory that was
returned by aligned_alloc(), because the latter would map to the
built-in allocator of libc. The Linux specific memalign() has a
similar interface and is safer to use, because it has been
available for a longer time. For AddressSanitizer, we will use
aligned_alloc() so that the constraint on size can be enforced.
buf_tmp_reserve_compression_buf(): When HAVE_ALIGNED_ALLOC holds,
round up the size to be an integer multiple of the alignment.
pfs_malloc(): In the unit test stub, round up the size to be an
integer multiple of the alignment.
Table_cache_instance: Define the structure aligned at
the CPU cache line, and remove a pad[] data member.
Krunal Bauskar reported this to improve performance on ARMv8.
aligned_malloc(): Wrapper for the Microsoft _aligned_malloc()
and the ISO/IEC 9899:2011 <stdlib.h> aligned_alloc().
Note: The parameters are in the Microsoft order (size, alignment),
opposite of aligned_alloc(alignment, size).
Note: The standard defines that size must be an integer multiple
of alignment. It is enforced by AddressSanitizer but not by GNU libc
on Linux.
aligned_free(): Wrapper for the Microsoft _aligned_free() and
the standard free().
HAVE_ALIGNED_ALLOC: A new test. Unfortunately, support for
aligned_alloc() may still be missing on some platforms.
We will fall back to posix_memalign() for those cases.
HAVE_MEMALIGN: Remove, along with any use of the nonstandard memalign().
PFS_ALIGNEMENT (sic): Removed; we will use CPU_LEVEL1_DCACHE_LINESIZE.
PFS_ALIGNED: Defined using the C++11 keyword alignas.
buf_pool_t::page_hash_table::create(),
lock_sys_t::hash_table::create():
lock_sys_t::hash_table::resize(): Pad the allocation size to an
integer multiple of the alignment.
Reviewed by: Vladislav Vaintroub
Summary of changes
- MD_CTX_SIZE is increased
- EVP_CIPHER_CTX_buf_noconst(ctx) does not work anymore, points
to nobody knows where. The assumption made previously was that
(since the function does not seem to be documented)
was that it points to the last partial source block.
Add own partial block buffer for NOPAD encryption instead
- SECLEVEL in CipherString in openssl.cnf
had been downgraded to 0, from 1, to make TLSv1.0 and TLSv1.1 possible
(according to https://github.com/openssl/openssl/blob/openssl-3.0.0/NEWS.md
even though the manual for SSL_CTX_get_security_level claims that it
should not be necessary)
- Workaround Ssl_cipher_list issue, it now returns TLSv1.3 ciphers,
in addition to what was set in --ssl-cipher
- ctx_buf buffer now must be aligned to 16 bytes with openssl(
previously with WolfSSL only), ot crashes will happen
- updated aes-t , to be better debuggable
using function, rather than a huge multiline macro
added test that does "nopad" encryption piece-wise, to test
replacement of EVP_CIPHER_CTX_buf_noconst
part of MDEV-28133
:: Syntax change ::
Keyword AUTO enables history partition auto-creation.
Examples:
CREATE TABLE t1 (x int) WITH SYSTEM VERSIONING
PARTITION BY SYSTEM_TIME INTERVAL 1 HOUR AUTO;
CREATE TABLE t1 (x int) WITH SYSTEM VERSIONING
PARTITION BY SYSTEM_TIME INTERVAL 1 MONTH
STARTS '2021-01-01 00:00:00' AUTO PARTITIONS 12;
CREATE TABLE t1 (x int) WITH SYSTEM VERSIONING
PARTITION BY SYSTEM_TIME LIMIT 1000 AUTO;
Or with explicit partitions:
CREATE TABLE t1 (x int) WITH SYSTEM VERSIONING
PARTITION BY SYSTEM_TIME INTERVAL 1 HOUR AUTO
(PARTITION p0 HISTORY, PARTITION pn CURRENT);
To disable or enable auto-creation one can use ALTER TABLE by adding
or removing AUTO from partitioning specification:
CREATE TABLE t1 (x int) WITH SYSTEM VERSIONING
PARTITION BY SYSTEM_TIME INTERVAL 1 HOUR AUTO;
# Disables auto-creation:
ALTER TABLE t1 PARTITION BY SYSTEM_TIME INTERVAL 1 HOUR;
# Enables auto-creation:
ALTER TABLE t1 PARTITION BY SYSTEM_TIME INTERVAL 1 HOUR AUTO;
If the rest of partitioning specification is identical to CREATE TABLE
no repartitioning will be done (for details see MDEV-27328).
:: Description ::
Before executing history-generating DML command (see the list of commands below)
add N history partitions, so that N would be sufficient for potentially
generated history. N > 1 may be required when history partitions are switched
by INTERVAL and current_timestamp is N times further than the interval
boundary of the last history partition.
If the last history partition equals or exceeds LIMIT records then new history
partition is created and selected as the working partition. According to
MDEV-28411 partitions cannot be switched (or created) while the command is
running. Thus LIMIT does not carry strict limitation and the history partition
size must be planned as LIMIT value plus average number of history one DML
command can generate.
Auto-creation is implemented by synchronous fast_alter_partition_table() call
from the thread of the executed DML command before the command itself is run
(by the fallback and retry mechanism similar to Discovery feature,
see Open_table_context).
The name for newly added partitions are generated like default partition names
with extension of MDEV-22155 (which avoids name clashes by extending assignment
counter to next free-enough gap).
These DML commands can trigger auto-creation:
DELETE (including multitable DELETE, excluding DELETE HISTORY)
UPDATE (including multitable UPDATE)
REPLACE (including REPLACE .. SELECT)
INSERT .. ON DUPLICATE KEY UPDATE (including INSERT .. SELECT .. ODKU)
LOAD DATA .. REPLACE
:: Bug fixes ::
MDEV-23642 Locking timeout caused by auto-creation affects original DML
The reasons for this are:
- Do not disrupt main business process (the history is auxiliary service);
- Consequences are non-fatal (history is not lost, but comes into wrong
partition; fixed by partitioning rebuild);
- There is more freedom for application to fail in this case or not: it may
read warning info and find corresponding error number.
- While non-failing command is easy to handle by an application and fail it,
the opposite is hard to handle: there is no automatic actions to fix
failed command and retry, DBA intervention is required and until then
application is non-functioning.
MDEV-23639 Auto-create does not work under LOCK TABLES or inside triggers
Don't do tdc_remove_table() for OT_ADD_HISTORY_PARTITION because it is
not possible in locked tables mode.
LTM_LOCK_TABLES mode (and LTM_PRELOCKED_UNDER_LOCK_TABLES) works out
of the box as fast_alter_partition_table() can reopen tables via
locked_tables_list.
In LTM_PRELOCKED we reopen and relock table manually.
:: More fixes ::
* some_table_marked_for_reopen flag fix
some_table_marked_for_reopen affets only reopen of
m_locked_tables. I.e. Locked_tables_list::reopen_tables() reopens only
tables from m_locked_tables.
* Unused can_recover_from_failed_open() condition
Is recover_from_failed_open() can be really used after
open_and_process_routine()?
:: Reviewed by ::
Sergei Golubchik <serg@mariadb.org>