buf_page_create() is invoked when page is initialized. So that
previous contents of the page ignored. In few cases, it calls
buf_page_get_gen() is called to fetch the page from buffer pool.
It should take x-latch on the page. If other thread uses the block
or block io state is different from BUF_IO_NONE then release the
mutex and check the state and buffer fix count again. For compressed
page, use the existing free block from LRU list to create new page.
Retry to fetch the compressed page if it is in flush list
fseg_create(), fseg_create_general(): Introduce block as a parameter
where segment header is placed. It is used to avoid repetitive
x-latch on the same page
Change the assert to check whether the page has SX latch and
X latch in all callee function of buf_page_create()
mtr_t::get_fix_count(): Get the buffer fix count of the given
block added by the mtr
FindBlock is added to find the buffer fix count of the given
block acquired by the mini-transaction
in buf_page_set_sticky
commit a1f899a8ab (MDEV-23233) added the
code to make page sticky. So that InnoDB can't allow the page to
be grabbed by other thread while doing lazy drop of ahi.
But the block could be in flush list and it could have io_fix value
as BUF_IO_WRITE. It could lead to the failure in buf_page_set_sticky().
buf_page_create(): If btr_search_drop_page_hash_index() must be invoked,
take x-latch on the block. If the block io_fix value is other than
BUF_IO_NONE, release the buffer pool mutex and page hash lock and
wait for I/O to complete.
commit ad6171b91c (MDEV-22456)
introduced code to buf_page_create() that would lazily drop
adaptive hash index entries for an index that has been
evicted from the data dictionary cache.
Unfortunately, that call was missing adequate protection.
While the btr_search_drop_page_hash_index(block) was executing,
the block could be reused for something else.
buf_page_create(): If btr_search_drop_page_hash_index() must be
invoked, pin the block before releasing the buf_pool->page_hash lock,
so that the block cannot be grabbed by other threads.
In commit 0f90728bc0 (MDEV-16809)
we introduced the configuration option innodb_log_optimize_ddl
for controlling whether native index creation or table-rebuild
in InnoDB should avoid writing full redo log.
Fungo Wang reported that this option is causing occasional failures.
The reason is that pages may be written to data files in an
inconsistent state. Applying log records to such inconsistent pages
may fail.
The solution is to always invoke PageBulk::finish() before page latches
may be released, to ensure that the page contents is in a consistent
state.
Something similar was implemented in MySQL 8.0.13:
mysql/mysql-server@d1254b9473
buf_block_t::skip_flush_check: Remove. Suppressing consistency checks
is a bad idea.
PageBulk::needs_finish(): New predicate: Determine whether
PageBulk::finish() must fix up the page.
PageBulk::init(): Clear PAGE_DIRECTION to ensure that needs_finish()
will hold. We change the field from PAGE_NO_DIRECTION to 0
and back without writing redo log. This trick avoids the need
to introduce any new data member to PageBulk.
PageBulk::insert(): Replace some high-level accessors to bypass
debug assertions related to PAGE_HEAP_TOP that we will be violating
until finish() has been executed.
PageBulk::finish(): Tolerate m_rec_no==0. We must invoke this also
on an empty page, to ensure that PAGE_HEAP_TOP is initialized.
PageBulk::commit(): Always invoke finish().
PageBulk::release(), BtrBulk::pageSplit(), BtrBulk::storeExt(),
BtrBulk::finish(): Invoke PageBulk::finish().
MemorySanitizer (clang -fsanitize=memory) requires that all code
be compiled with instrumentation enabled. The only exception is the
C runtime library. Failure to use instrumented libraries will cause
bogus messages about memory being uninitialized.
In WITH_MSAN builds, we must avoid calling getservbyname(),
because even though it is a standard library function, it is
not instrumented, not even in clang 10.
Note: Before MariaDB Server 10.5, ./mtr will typically fail
due to the old PCRE library, which was updated in MDEV-14024.
The following cmake options were tested on 10.5
in commit 94d0bb4dbe:
cmake \
-DCMAKE_C_FLAGS='-march=native -O2' \
-DCMAKE_CXX_FLAGS='-stdlib=libc++ -march=native -O2' \
-DWITH_EMBEDDED_SERVER=OFF -DWITH_UNIT_TESTS=OFF -DCMAKE_BUILD_TYPE=Debug \
-DWITH_INNODB_{BZIP2,LZ4,LZMA,LZO,SNAPPY}=OFF \
-DPLUGIN_{ARCHIVE,TOKUDB,MROONGA,OQGRAPH,ROCKSDB,CONNECT,SPIDER}=NO \
-DWITH_SAFEMALLOC=OFF \
-DWITH_{ZLIB,SSL,PCRE}=bundled \
-DHAVE_LIBAIO_H=0 \
-DWITH_MSAN=ON
MEM_MAKE_DEFINED(): An alias for VALGRIND_MAKE_MEM_DEFINED()
and __msan_unpoison().
MEM_GET_VBITS(), MEM_SET_VBITS(): Aliases for
VALGRIND_GET_VBITS(), VALGRIND_SET_VBITS(), __msan_copy_shadow().
InnoDB: Replace the UNIV_MEM_ macros with corresponding MEM_ macros.
ut_crc32_8_hw(), ut_crc32_64_low_hw(): Use the compiler built-in
functions instead of inline assembler when building WITH_MSAN.
This will require at least -msse4.2 when building for IA-32 or AMD64.
The inline assembler would not be instrumented, and would thus cause
bogus failures.
This race condition was introduced by
commit ad6171b91c (MDEV-22456).
In the observed case, two threads were executing
btr_search_drop_page_hash_index() on the same block,
to free a stale entry that was attached to a dropped index.
Both threads were holding an S latch on the block.
We must prevent the double-free of block->index by holding
block->lock in exclusive mode.
btr_search_guess_on_hash(): Do not invoke
btr_search_drop_page_hash_index(block) to get rid of
stale entries, because we are not necessarily holding
an exclusive block->lock here.
buf_defer_drop_ahi(): New function, to safely drop stale
entries in buf_page_mtr_lock(). We will skip the call to
btr_search_drop_page_hash_index(block) when only requesting
bufferfixing (no page latch), because in that case, we should
not be accessing the adaptive hash index, and we might get
a deadlock if we acquired the page latch.
Introduce a new ATTRIBUTE_NOINLINE to
ib::logger member functions, and add UNIV_UNLIKELY hints to callers.
Also, remove some crash reporting output. If needed, the
information will be available using debugging tools.
Furthermore, remove some fts_enable_diag_print output that included
indexed words in raw form. The code seemed to assume that words are
NUL-terminated byte strings. It is not clear whether a NUL terminator
is always guaranteed to be present. Also, UCS2 or UTF-16 strings would
typically contain many NUL bytes.
Problem:
========
During buffer pool resizing, InnoDB recreates the dictionary hash
tables. Dictionary hash table reuses the heap of AHI hash tables.
It leads to memory corruption.
Fix:
====
- While disabling AHI, free the heap and AHI hash tables. Recreate the
AHI hash tables and assign new heap when AHI is enabled.
- btr_blob_free() access invalid page if page was reallocated during
buffer poolresizing. So btr_blob_free() should get the page from
buf_pool instead of using existing block.
- btr_search_enabled and block->index should be checked after
acquiring the btr_search_sys latch
- Moved the buffer_pool_scan debug sync to earlier before accessing the
btr_search_sys latches to avoid the hang of truncate_purge_debug
test case
- srv_printf_innodb_monitor() should acquire btr_search_sys latches
before AHI hash tables.
Problem:
=======
While evicting the uncompressed page from buffer pool, InnoDB writes
the checksum for the compressed page in buf_LRU_free_page().
So while flushing the compressed page, checksum validation fails
when innodb_checksum_algorithm variable changed to strict_none.
Solution:
========
- Calculate the checksum only during flushing of page. Removed the
checksum write in buf_LRU_free_page().
If the InnoDB buffer pool contains many pages for a table or index
that is being dropped or rebuilt, and if many of such pages are
pointed to by the adaptive hash index, dropping the adaptive hash index
may consume a lot of time.
The time-consuming operation of dropping the adaptive hash index entries
is being executed while the InnoDB data dictionary cache dict_sys is
exclusively locked.
It is not actually necessary to drop all adaptive hash index entries
at the time a table or index is being dropped or rebuilt. We can let
the LRU replacement policy of the buffer pool take care of this gradually.
For this to work, we must detach the dict_table_t and dict_index_t
objects from the main dict_sys cache, and once the last
adaptive hash index entry for the detached table is removed
(when the garbage page is evicted from the buffer pool) we can free
the dict_table_t and dict_index_t object.
Related to this, in MDEV-16283, we made ALTER TABLE...DISCARD TABLESPACE
skip both the buffer pool eviction and the drop of the adaptive hash index.
We shifted the burden to ALTER TABLE...IMPORT TABLESPACE or DROP TABLE.
We can remove the eviction from DROP TABLE. We must retain the eviction
in the ALTER TABLE...IMPORT TABLESPACE code path, so that in case the
discarded table is being re-imported with the same tablespace identifier,
the fresh data from the imported tablespace will replace any stale pages
in the buffer pool.
rpl.rpl_failed_drop_tbl_binlog: Remove the test. DROP TABLE can
no longer be interrupted inside InnoDB.
fseg_free_page(), fseg_free_step(), fseg_free_step_not_header(),
fseg_free_page_low(), fseg_free_extent(): Remove the parameter
that specifies whether the adaptive hash index should be dropped.
btr_search_lazy_free(): Lazily free an index when the last
reference to it is dropped from the adaptive hash index.
buf_pool_clear_hash_index(): Declare static, and move to the
same compilation unit with the bulk of the adaptive hash index
code.
dict_index_t::clone(), dict_index_t::clone_if_needed():
Clone an index that is being rebuilt while adaptive hash index
entries exist. The original index will be inserted into
dict_table_t::freed_indexes and dict_index_t::set_freed()
will be called.
dict_index_t::set_freed(), dict_index_t::freed(): Note that
or check whether the index has been freed. We will use the
impossible page number 1 to denote this condition.
dict_index_t::n_ahi_pages(): Replaces btr_search_info_get_ref_count().
dict_index_t::detach_columns(): Move the assignment n_fields=0
to ha_innobase_inplace_ctx::clear_added_indexes().
We must have access to the columns when freeing the
adaptive hash index. Note: dict_table_t::v_cols[] will remain
valid. If virtual columns are dropped or added, the table
definition will be reloaded in ha_innobase::commit_inplace_alter_table().
buf_page_mtr_lock(): Drop a stale adaptive hash index if needed.
We will also reduce the number of btr_get_search_latch() calls
and enclose some more code inside #ifdef BTR_CUR_HASH_ADAPT
in order to benefit cmake -DWITH_INNODB_AHI=OFF.
On a checksum failure of a ROW_FORMAT=COMPRESSED page,
buf_LRU_free_one_page() would invoke buf_LRU_block_remove_hashed()
which will read the uncompressed page frame, although it would not
be initialized. With bad enough luck, fil_page_get_type(page)
could return an unrecognized value and cause the server to abort.
buf_page_io_complete(): On the corruption of a ROW_FORMAT=COMPRESSED
page, zerofill the uncompressed page frame.
redo log during recovery
- InnoDB unnecessarily reads the page even though it has fully initialized
buffered redo log records. Allow the page initialization redo log to
apply for the page in buf_page_get_gen() during recovery.
- Renamed buf_page_get_gen() to buf_page_get_low()
- Newly added buf_page_get_gen() will check for buffered redo log for
the particular page id during recovery
- Added new function buf_page_mtr_lock() which basically latches the page
for the given latch type.
- recv_recovery_create_page() is inline function which creates a page
if it has page initialization redo log records.
In my micro-benchmarks memcmp(4196) 3 times faster than old
implementation. Also, it's generally better to use as less
reinterpret_casts<> as possible.
buf_is_zeroes(): renamed from buf_page_is_zeroes() and
argument changed to span<> for convenience.
st_::span<T>::const_iterator: fixed
page_zip-verify_checksum(): make argument byte* instead of void*
buf_pool_resize(): Simplify the fault injection
for innodb.buf_pool_resize_oom.
innodb.buf_pool_resize_oom: Use a small buffer pool.
innodb.innodb_buffer_pool_load_now: Make use of the sequence engine,
to avoid creating explicit InnoDB record locks. Clean up the
accesses to information_schema.innodb_buffer_page_lru.
Problem:
=======
Checksum fields can have value as zero. In that case, InnoDB falsely
consider that page should be all zeroes. It leads to wrong detection of page
corruption.
Solution:
========
Remove the condition that checks if checksum fields are zero then
page should be all zeroes.
The test innodb.leaf_page_corrupted_during_recovery
fails on buildbot with
Warning 1406 Data too long for column 'line' at row 10
line
len 16384; hex ...
because of a page dumps that InnoDB is generating for a corrupted page
Since this test is using debug instrumentation, we will solve the
issue by disabling page dumps in debug builds altogether. Users of
debug builds will likely know how to extract page dumps in other means.
Page dump output could sometimes be useful when diagnosing problems
that users are facing. Hence we will keep the page dump output in
non-debug (release) builds.
- Introduce a new variable called innodb_encrypt_temporary_tables which is
a boolean variable. It decides whether to encrypt the temporary tablespace.
- Encrypts the temporary tablespace based on full checksum format.
- Introduced a new counter to track encrypted and decrypted temporary
tablespace pages.
- Warnings issued if temporary table creation has conflict value with
innodb_encrypt_temporary_tables
- Added a new test case which reads and writes the pages from/to temporary
tablespace.
Problem:
=========
One of the purge thread access the corrupted page and tries to remove from
LRU list. In the mean time, other purge threads are waiting for same page
in buf_wait_for_read(). Assertion(buf_fix_count == 0) fails for the
purge thread which tries to remove the page from LRU list.
Solution:
========
- Set the page id as FIL_NULL to indicate the page is corrupted before
removing the block from LRU list. Acquire hash lock for the particular
page id and wait for the other threads to release buf_fix_count
for the block.
- Added the error check for btr_cur_open() in row_search_on_row_ref().
- Don't apply redo log for the corrupted page when innodb_force_recovery > 0.
- Allow the table to be dropped when index root page is
corrupted when innodb_force_recovery > 0.
The compile-time option IBUF_COUNT_DEBUG has not been used for years.
It would only work with up to 3 created .ibd files, with no buffered
changes existing while InnoDB is started up.
InnoDB crash recovery used to read every data page for which
redo log exists. This is unnecessary for those pages that are
initialized by the redo log. If a newly created page is corrupted,
recovery could unnecessarily fail. It would suffice to reinitialize
the page based on the redo log records.
To add insult to injury, InnoDB crash recovery could hang if it
encountered a corrupted page. We will fix also that problem.
InnoDB would normally refuse to start up if it encounters a
corrupted page on recovery, but that can be overridden by
setting innodb_force_recovery=1.
Data pages are completely initialized by the records
MLOG_INIT_FILE_PAGE2 and MLOG_ZIP_PAGE_COMPRESS.
MariaDB 10.4 additionally recognizes MLOG_INIT_FREE_PAGE,
which notifies that a page has been freed and its contents
can be discarded (filled with zeroes).
The record MLOG_INDEX_LOAD notifies that redo logging has
been re-enabled after being disabled. We can avoid loading
the page if all buffered redo log records predate the
MLOG_INDEX_LOAD record.
For the internal tables of FULLTEXT INDEX, no MLOG_INDEX_LOAD
records were written before commit aa3f7a107c.
Hence, we will skip these optimizations for tables whose
name starts with FTS_.
This is joint work with Thirunarayanan Balathandayuthapani.
fil_space_t::enable_lsn, file_name_t::enable_lsn: The LSN of the
latest recovered MLOG_INDEX_LOAD record for a tablespace.
mlog_init: Page initialization operations discovered during
redo log scanning. FIXME: This really belongs in recv_sys->addr_hash,
and should be removed in MDEV-19176.
recv_addr_state: Add the new state RECV_WILL_NOT_READ to
indicate that according to mlog_init, the page will be
initialized based on redo log record contents.
recv_add_to_hash_table(): Set the RECV_WILL_NOT_READ state
if appropriate. For now, we do not treat MLOG_ZIP_PAGE_COMPRESS
as page initialization. This works around bugs in the crash
recovery of ROW_FORMAT=COMPRESSED tables.
recv_mark_log_index_load(): Process a MLOG_INDEX_LOAD record
by resetting the state to RECV_NOT_PROCESSED and by updating
the fil_name_t::enable_lsn.
recv_init_crash_recovery_spaces(): Copy fil_name_t::enable_lsn
to fil_space_t::enable_lsn.
recv_recover_page(): Add the parameter init_lsn, to ignore
any log records that precede the page initialization.
Add DBUG output about skipped operations.
buf_page_create(): Initialize FIL_PAGE_LSN, so that
recv_recover_page() will not wrongly skip applying
the page-initialization record due to the field containing
some newer LSN as a leftover from a different page.
Do not invoke ibuf_merge_or_delete_for_page() during
crash recovery.
recv_apply_hashed_log_recs(): Remove some unnecessary lookups.
Note if a corrupted page was found during recovery.
After invoking buf_page_create(), do invoke
ibuf_merge_or_delete_for_page() via mlog_init.ibuf_merge()
in the last recovery batch.
ibuf_merge_or_delete_for_page(): Relax a debug assertion.
innobase_start_or_create_for_mysql(): Abort startup if
a corrupted page was found during recovery. Corrupted pages
will not be flagged if innodb_force_recovery is set.
However, the recv_sys->found_corrupt_fs flag can be set
regardless of innodb_force_recovery if file names are found
to be incorrect (for example, multiple files with the same
tablespace ID).
os_mem_alloc_large(): Invoke the macro ut_2pow_round() with the
correct argument type.
innobase_large_page_size, innobase_use_large_pages,
os_use_large_pages, os_large_page_size: Remove.
Simply refer to opt_large_page_size, my_use_large_pages.
The recv_sys data structures are accessed not only from the thread
that executes InnoDB plugin initialization, but also from the
InnoDB I/O threads, which can invoke recv_recover_page().
Assert that sufficient concurrency control is in place.
Some code was accessing recv_sys data structures without
holding recv_sys->mutex.
recv_recover_page(bpage): Refactor the call from buf_page_io_complete()
into a separate function that performs necessary steps. The
main thread was unnecessarily releasing and reacquiring recv_sys->mutex.
recv_recover_page(block,mtr,recv_addr): Pass more parameters from
the caller. Avoid redundant lookups and computations. Eliminate some
redundant variables.
recv_get_fil_addr_struct(): Assert that recv_sys->mutex is being held.
That was not always the case!
recv_scan_log_recs(): Acquire recv_sys->mutex for the whole duration
of the function. (While we are scanning and buffering redo log records,
no pages can be read in.)
recv_read_in_area(): Properly protect access with recv_sys->mutex.
recv_apply_hashed_log_recs(): Check recv_addr->state only once,
and continuously hold recv_sys->mutex. The mutex will be released
and reacquired inside recv_recover_page() and recv_read_in_area(),
allowing concurrent processing by buf_page_io_complete() in I/O threads.
The page_size argument to buf_page_get_gen() only matters when the
page is going to be loaded into the buffer pool. Allow callers to
pass a dummy parameter when using BUF_GET_IF_IN_POOL (which would
return NULL if the block is not in the buffer pool).
If InnoDB crash recovery was needed, the InnoDB function srv_start()
would invoke extra validation, reading something from every InnoDB
data file. This should be unnecessary now that MDEV-14717 made
RENAME operations crash-safe inside InnoDB (which can be
disabled in MariaDB 10.2 by setting innodb_safe_truncate=OFF).
dict_check_sys_tables(): Skip tables that would be dropped by
row_mysql_drop_garbage_tables(). Perform extra validation only
if innodb_safe_truncate=OFF, innodb_force_recovery=0 and
crash recovery was needed.
dict_load_table_one(): Validate the root page of the table.
In this way, we can deny access to corrupted or mismatching tables
not only after crash recovery, but also after a clean shutdown.
Before MDEV-12113 (MariaDB Server 10.1.25), on shutdown InnoDB would write
the current LSN to the first page of each file of the system tablespace.
This is incompatible with MariaDB's InnoDB table encryption, because
encryption repurposed the field for an encryption key ID and checksum.
buf_page_is_corrupted(): For the InnoDB system tablespace, skip
FIL_PAGE_FILE_FLUSH_LSN when checking if a page is all zero,
because the first page of each file in the system tablespace can
contain nonzero bytes in the field.
Since MySQL 5.6.16 (and MariaDB Server 10.0.11), changes of
buf_page_t::buf_fix_count are atomic memory operations if
PAGE_ATOMIC_REF_COUNT is defined. Since MySQL 5.7
(and MariaDB Server 10.2.2), the field is always updated
by atomic memory operations.
In a few occurrences, updates of the counter were unnecessarily
surrounded by an acquisition and release of the block mutex
(buf_block_t::mutex or buf_pool_t::zip_mutex). Remove these
unnecessary mutex operations.
buf_page_is_corrupted(): Read the global variable srv_checksum_algorithm
only once in order to avoid a race condition when
SET GLOBAL innodb_checksum_algorithm=...;
is being executed concurrently with this function.