of untouched rows in full table scans".
SELECT ... FOR UPDATE/LOCK IN SHARE MODE statements as well as
UPDATE/DELETE statements which were executed using full table
scan were not releasing locks on rows which didn't satisfy
WHERE condition.
This bug surfaced in 5.0 and affected NDB tables. (InnoDB tables
intentionally don't support such unlocking in default mode).
This problem occured because code implementing join didn't call
handler::unlock_row() for rows which didn't satisfy part of condition
attached to this particular table/level of nested loop. So we solve
the problem adding this call.
Note that we already had this call in place in 4.1 but it was lost
(actually not quite correctly placed) when we have introduced nested
joins.
Also note that additional QA should be requested once this patch is
pushed as interaction between handler::unlock_row() and many recent
MySQL features such as subqueries, unions, views is not tested enough.
Removed "use diagnostics", reduces Perl speed significantly. Can be
enabled with "perl -Mdiagnostics mysql-test-run.pl".
mtr_report.pl:
Don't try output "skipped" comment if there is none (bug#24471)
fails randomly.
The problem was that the test case used command line tool (mysql)
without specifying connect_timeout argument. In some cases,
this lead to hanging of the test case.
The fix is to specify --connect_timeout=1 when starting mysql.
Also, the patch contains polishing and various cleanups to simplify
analyzing of the problems further.
The patch affects only test suite, no server codebase has been
touched.
Load shared libraries from zlib (fixed that mysql-test-run.pl didn't work on some Solaris boxes)
Added connect timeout to test to make im_daemon_life_cycle more predictable
(Mostly in DBUG_PRINT() and unused arguments)
Fixed bug in query cache when used with traceing (--with-debug)
Fixed memory leak in mysqldump
Removed warnings from mysqltest scripts (replaced -- with #)
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
The problem was that some functions (namely IN() starting with 4.1, and
CHAR() starting with 5.0) were returning NULL in certain conditions,
while they didn't set their maybe_null flag. Because of that there could
be some problems with 'IS NULL' check, and statements that depend on the
function value domain, like CREATE TABLE t1 SELECT 1 IN (2, NULL);.
The fix is to set maybe_null correctly.
The regression is caused by the fix for bug 14767. When INSERT ... SELECT
used a view in the SELECT list that was not inlined, and there was an
active transaction, the server could crash in Query_cache::invalidate.
On INSERT ... SELECT only the table being inserted into is invalidated.
Thus views that can't be inlined are skipped from invalidation.
The bug manifests itself in two ways so there is 2 test cases.
One checks that the only the table being inserted into is invalidated.
And the second one checks that there is no crash on INSERT ... SELECT.
This change set implements the DROP TRIGGER IF EXISTS functionality.
This fix is considered a bug and not a feature, because without it,
there is no known method to write a database creation script that can create
a trigger without failing, when executed on a database that may or may not
contain already a trigger of the same name.
Implementing this functionality closes an orthogonality gap between triggers
and stored procedures / stored functions (which do support the DROP IF
EXISTS syntax).
In sql_trigger.cc, in mysql_create_or_drop_trigger,
the code has been reordered to:
- perform the tests that do not depend on the file system (access()),
- get the locks (wait_if_global_read_lock, LOCK_open)
- call access()
- perform the operation
- write to the binlog
- unlock (LOCK_open, start_waiting_global_read_lock)
This is to ensure that all the code that depends on the presence of the
trigger file is executed in the same critical section,
and prevents race conditions similar to the case fixed by Bug 14262 :
- thread 1 executes DROP TRIGGER IF EXISTS, access() returns a failure
- thread 2 executes CREATE TRIGGER
- thread 2 logs CREATE TRIGGER
- thread 1 logs DROP TRIGGER IF EXISTS
The patch itself is based on code contributed by the MySQL community,
under the terms of the Contributor License Agreement (See Bug 18161).