The problem was that was_null and null_value variables was reset in each reexecution of IN subquery, but engine rerun only for non-constant subqueries.
Fixed checking constant in Item_equal sort.
Fix constant reporting in Item_subselect.
sql/item_subselect.cc:
Added purecov info
sql/sql_select.cc:
Added cast
storage/innobase/handler/ha_innodb.cc:
Added cast
storage/xtradb/btr/btr0btr.c:
Added buf_block_get_frame_fast() to avoid compiler warning
storage/xtradb/handler/ha_innodb.cc:
Added cast
storage/xtradb/include/buf0buf.h:
Innodb has buf_block_get_frame(block) defined as (block)->frame.
Didn't want to do a big change to break xtradb as it may use block_get_frame() differently, so I mad this quick hack to patch one compiler warning.
When resolving outer fields, Item_field::fix_outer_fields()
creates new Item_refs for each execution of a prepared statement, so
these must be allocated in the runtime memroot. The memroot switching
before resolving JOIN::having causes these to be allocated in the
statement root, leaking memory for each PS execution.
sql/item_subselect.cc:
addon, fix for 11829691, item could be created in
runtime memroot, so we need to use real_item instead.
When resolving outer fields, Item_field::fix_outer_fields()
creates new Item_refs for each execution of a prepared statement, so
these must be allocated in the runtime memroot. The memroot switching
before resolving JOIN::having causes these to be allocated in the
statement root, leaking memory for each PS execution.
Analysis:
The fix for bug lp:985667 implements the method Item_subselect::no_rows_in_result()
for all main kinds of subqueries. The purpose of this method is to be called from
return_zero_rows() and set Items to some default value in the case when a query
returns no rows. Aggregates and subqueries require special treatment in this case.
Every implementation of Item_subselect::no_rows_in_result() called
Item_subselect::make_const() to set the subquery predicate to its default value
irrespective of where the predicate was located in the query. Once the predicate
was set to a constant it was never executed.
At the same time, the JOIN object of the fake select for UNIONs (the one used for
the final result of the UNION), was set after all subqueries in the union were
executed. Since we set the subquery as constant, it was never executed, and the
corresponding JOIN was never created.
In order to decide whether the result of NOT IN is NULL or FALSE, Item_in_optimizer
needs to check if the subquery result was empty or not. This is where we got the
crash, because subselect_union_engine::no_rows() checks for
unit->fake_select_lex->join->send_records, and the join object was NULL.
Solution:
If a subquery is in the HAVING clause it must be evaluated in order to know its
result, so that we can properly filter the result records. Once subqueries in the
HAVING clause are executed even in the case of no result rows, this specific
crash will be solved, because the UNION will be executed, and its JOIN will be
constructed. Therefore the fix for this crash is to narrow the fix for lp:985667,
and to apply Item_subselect::no_rows_in_result() only when the subquery predicate
is in the SELECT clause.
Analysis:
Queries with implicit grouping (there is aggregate, but no group by)
follow some non-obvious semantics in the case of empty result set.
Aggregate functions produce some special "natural" value depending on
the function. For instance MIN/MAX return NULL, COUNT returns 0.
The complexity comes from non-aggregate expressions in the select list.
If the non-aggregate expression is a constant, it can be computed, so
we should return its value, however if the expression is non-constant,
and depends on columns from the empty result set, then the only meaningful
value is NULL.
The cause of the wrong result was that for subqueries the optimizer didn't
make a difference between constant and non-constant ones in the case of
empty result for implicit grouping.
Solution:
In all implementations of Item_subselect::no_rows_in_result() check if the
subquery predicate is constant. If it is constant, do not set it to the
default value for implicit grouping, instead let it be evaluated.
Analysis:
The optimizer detects an empty result through constant table optimization.
Then it calls return_zero_rows(), which in turns calls inderctly
Item_maxmin_subselect::no_rows_in_result(). The latter method set "value=0",
however "value" is pointer to Item_cache, and not just an integer value.
All of the Item_[maxmin | singlerow]_subselect::val_XXX methods does:
if (forced_const)
return value->val_real();
which of course crashes when value is a NULL pointer.
Solution:
When the optimizer discovers an empty result set, set
Item_singlerow_subselect::value to a FALSE constant Item instead of NULL.
The patch enables back constant subquery execution during
query optimization after it was disabled during the development
of MWL#89 (cost-based choice of IN-TO-EXISTS vs MATERIALIZATION).
The main idea is that constant subqueries are allowed to be executed
during optimization if their execution is not expensive.
The approach is as follows:
- Constant subqueries are recursively optimized in the beginning of
JOIN::optimize of the outer query. This is done by the new method
JOIN::optimize_constant_subqueries(). This is done so that the cost
of executing these queries can be estimated.
- Optimization of the outer query proceeds normally. During this phase
the optimizer may request execution of non-expensive constant subqueries.
Each place where the optimizer may potentially execute an expensive
expression is guarded with the predicate Item::is_expensive().
- The implementation of Item_subselect::is_expensive has been extended
to use the number of examined rows (estimated by the optimizer) as a
way to determine whether the subquery is expensive or not.
- The new system variable "expensive_subquery_limit" controls how many
examined rows are considered to be not expensive. The default is 100.
In addition, multiple changes were needed to make this solution work
in the light of the changes made by MWL#89. These changes were needed
to fix various crashes and wrong results, and legacy bugs discovered
during development.
Create an Item_cache based on item's cmp_type, not result_type in
subselect_engine.
Use result_field in Item_cache_temporal::cache_value(),
just like all other Item_cache*::cache_value() do.
Analysis:
The reason for the wrong result is the interaction between constant
optimization (in this case 1-row table) and subquery optimization.
- First the outer query is optimized, and 'make_join_statistics' finds that
table t2 has one row, reads that row, and marks the whole table as constant.
This also means that all fields of t2 are constant.
- Next, we optimize the subquery in the end of the outer 'make_join_statistics'.
The field 'f2' is considered constant, with value '3'. The subquery predicate
is rewritten as the constant TRUE.
- The outer query execution detects early that the whole query result is empty
and calls 'return_zero_rows'. Since the query is with implicit grouping, we
have to produce one row with special values for the aggregates (depending on
each aggregate function), and NULL values for all non-aggregate fields. This
function calls 'no_rows_in_result' to set each aggregate function to the
default value when it aggregates over an empty result, and then calls
'send_data', which in turn evaluates each Item in the SELECT list.
- When evaluation reaches the subquery predicate, it executes the subquery
with field 'f2' having a constant value '3', and the subquery produces the
incorrect result '7'.
Solution:
Implement Item::no_rows_in_result for all subquery predicates. In order to
make this work, it is also needed to make all val_* methods of all subquery
predicates respect the Item_subselect::forced_const flag. Otherwise subqueries
are executed anyways, and override the default value set by no_rows_in_result
with whatever result is produced from the subquery evaluation.
Part#1: make EXPLAIN's plan match the one by actual execution:
Item_subselect::used_tables() should return the same value irrespectively
of whether we're running an EXPLAIN or a SELECT.
The previous patch for the bug (that erroneously identified the bug as
bug 972973 in its comment) was incorrect.
It turned out that the code that triggered the abort complain reported for
the bug was not needed at all.
When the function free_tmp_table deletes the handler object for
a temporary table the field TABLE::file for this table should be
set to NULL. Otherwise an assertion failure may occur.
- When doing join optimization, pre-sort the tables so that they mimic the execution
order we've had with 'semijoin=off'.
- That way, we will not get regressions when there are two query plans (the old and the
new) that have indentical costs but different execution times (because of factors that
the optimizer was not able to take into account).
include/mysql_com.h:
remove "shutdown levels" that aren't shutdown levels from mysql_enum_shutdown_level
mysys/my_addr_resolve.c:
my_snprintf in 5.5 (but not in 5.3) supports %p
sql/item_func.cc:
use a method (that exists only in 5.5) instead of directly accessing a member
sql/item_subselect.cc:
use a method (that exists only in 5.5) instead of directly accessing a member
sql/opt_subselect.cc:
use a method (that exists only in 5.5) instead of directly accessing a member
sql/sql_select.cc:
use a method (that exists only in 5.5) instead of directly accessing a member
A defect in the subquery substitution code may lead to a server crash:
setting substitution's name should be followed by setting its length
(to keep them in sync).
mysql-test/r/gis.result:
BUG#12537203 - CRASH WHEN SUBSELECTING GLOBAL VARIABLES IN GEOMETRY FUNCTION ARGUMENTS
test result.
mysql-test/t/gis.test:
BUG#12537203 - CRASH WHEN SUBSELECTING GLOBAL VARIABLES IN GEOMETRY FUNCTION ARGUMENTS
test case.
sql/item_subselect.cc:
BUG#12537203 - CRASH WHEN SUBSELECTING GLOBAL VARIABLES IN GEOMETRY FUNCTION ARGUMENTS
set substitution's name length as well as the name itself (to keep them in sync).