incomplete in 5.0 (and review fixes).
When in 5.0.13 I introduced class Prepared_statement and methods
::prepare and ::execute, general logging was left out of this class.
This was good for stored procedures, since in stored procedures
we do not log sub-statements, but introduced a regression in case of SQL
syntax for prepared statements, as previously we would log the actual
statements to the log, and after the change we would log only
COM_QUERY text.
Restore the old behavior, but still suppress logging if inside a stored
procedure.
Based on a community contributed patch from Vladimir Shebordaev.
No test case since we do not have a mechanism to test output
of the general log.
causes full table lock on innodb table.
Also fixes Bug#28502 Triggers that update another innodb table
will block on X lock unnecessarily (duplciate).
Code review fixes.
Both bugs' synopses are misleading: InnoDB table is
not X locked. The statements, however, cannot proceed concurrently,
but this happens due to lock conflicts for tables used in triggers,
not for the InnoDB table.
If a user had an InnoDB table, and two triggers, AFTER UPDATE and
AFTER INSERT, competing for different resources (e.g. two distinct
MyISAM tables), then these two triggers would not be able to execute
concurrently. Moreover, INSERTS/UPDATES of the InnoDB table would
not be able to run concurrently.
The problem had other side-effects (see respective bug reports).
This behavior was a consequence of a shortcoming of the pre-locking
algorithm, which would not distinguish between different DML operations
(e.g. INSERT and DELETE) and pre-lock all the tables
that are used by any trigger defined on the subject table.
The idea of the fix is to extend the pre-locking algorithm to keep track,
for each table, what DML operation it is used for and not
load triggers that are known to never be fired.
ALTER VIEW is currently not supported as a prepared statement
and should be disabled as such as they otherwise could cause server crashes.
ALTER VIEW is currently not supported when called from stored
procedures or functions for related reasons and should also be disabled.
This patch disables these DDL statements and adjusts the appropriate test
cases accordingly.
Additional tests has been added to reflect on the fact that we do support
CREATE/ALTER/DROP TABLE for Prepared Statements (PS), Stored Procedures (SP)
and PS within SP.
Sometimes a parameter slot may not get a value because of the protocol
data being plain wrong.
Such cases should be detected and handled by returning an error.
Fixed by checking data stream constraints where possible (like maximum
length) and reacting to the case where a value cannot be constructed.
bug #26842: master binary log contains invalid queries - replication fails
bug #12826: Possible to get inconsistent slave using SQL syntax Prepared Statements
Problem:
binlogging PS' we may produce syntacticly incorrect queries in the binlog replacing
some parameters with variable names (instead of variable values).
E.g. in the reported case of "limit ?" clause: replacing "?" with "@var"
produces "limit @var" which is not a correct SQL syntax.
Also it may lead to different query execution on slave if we
set and use a variable in the same statement, e.g.
"insert into t1 values (@x:=@x+1, ?)"
Fix: make the stored statement string created upon its execution use variable values
(instead of names) to fill placeholders.
database.
If a user has a right to update anything in the current database then the
access was granted and further checks of access rights for underlying tables
wasn't done correctly. The check is done before a view is opened and thus no
check of access rights for underlying tables can be carried out.
This allows a user to update through a view a table from another database for
which he hasn't enough rights.
Now the mysql_update() and the mysql_test_update() functions are forces
re-checking of access rights after a view is opened.
Bug #20662 "Infinite loop in CREATE TABLE IF NOT EXISTS ... SELECT
with locked tables"
Bug #20903 "Crash when using CREATE TABLE .. SELECT and triggers"
Bug #24738 "CREATE TABLE ... SELECT is not isolated properly"
Bug #24508 "Inconsistent results of CREATE TABLE ... SELECT when
temporary table exists"
Deadlock occured when one tried to execute CREATE TABLE IF NOT
EXISTS ... SELECT statement under LOCK TABLES which held
read lock on target table.
Attempt to execute the same statement for already existing
target table with triggers caused server crashes.
Also concurrent execution of CREATE TABLE ... SELECT statement
and other statements involving target table suffered from
various races (some of which might've led to deadlocks).
Finally, attempt to execute CREATE TABLE ... SELECT in case
when a temporary table with same name was already present
led to the insertion of data into this temporary table and
creation of empty non-temporary table.
All above problems stemmed from the old implementation of CREATE
TABLE ... SELECT in which we created, opened and locked target
table without any special protection in a separate step and not
with the rest of tables used by this statement.
This underminded deadlock-avoidance approach used in server
and created window for races. It also excluded target table
from prelocking causing problems with trigger execution.
The patch solves these problems by implementing new approach to
handling of CREATE TABLE ... SELECT for base tables.
We try to open and lock table to be created at the same time as
the rest of tables used by this statement. If such table does not
exist at this moment we create and place in the table cache special
placeholder for it which prevents its creation or any other usage
by other threads.
We still use old approach for creation of temporary tables.
Also note that we decided to postpone introduction of some tests
for concurrent behaviour of CREATE TABLE ... SELECT till 5.1.
The main reason for this is absence in 5.0 ability to set @@debug
variable at runtime, which can be circumvented only by using several
test files with individual .opt files. Since the latter is likely
to slowdown test-suite unnecessary we chose not to push this tests
into 5.0, but run them manually for this version and later push
their optimized version into 5.1
The issue found with bug 25411 is due to the function skip_rear_comments()
which damages the source code while implementing a work around.
The root cause of the problem is in the lexical analyser, which does not
process special comments properly.
For special comments like :
[1] aaa /*!50000 bbb */ ccc
since 5.0 is a version older that the current code, the parser is in lining
the content of the special comment, so that the query to process is
[2] aaa bbb ccc
However, the text of the query captured when processing a stored procedure,
stored function or trigger (or event in 5.1), can be after rebuilding it:
[3] aaa bbb */ ccc
which is wrong.
To fix bug 25411 properly, the lexical analyser needs to return [2] when
in lining special comments.
In order to implement this, some preliminary cleanup is required in the code,
which is implemented by this patch.
Before this change, the structure named LEX (or st_lex) contains attributes
that belong to lexical analysis, as well as attributes that represents the
abstract syntax tree (AST) of a statement.
Creating a new LEX structure for each statements (which makes sense for the
AST part) also re-initialized the lexical analysis phase each time, which
is conceptually wrong.
With this patch, the previous st_lex structure has been split in two:
- st_lex represents the Abstract Syntax Tree for a statement. The name "lex"
has not been changed to avoid a bigger impact in the code base.
- class lex_input_stream represents the internal state of the lexical
analyser, which by definition should *not* be reinitialized when parsing
multiple statements from the same input stream.
This change is a pre-requisite for bug 25411, since the implementation of
lex_input_stream will later improve to deal properly with special comments,
and this processing can not be done with the current implementation of
sp_head::reset_lex and sp_head::restore_lex, which interfere with the lexer.
This change set alone does not fix bug 25411.
INSERT uses query_id to verify what fields are
mentioned in the fields list of the INSERT command.
However the check for that is made after the
ON DUPLICATE KEY is processed. This causes all
the fields mentioned in ON DUPLICATE KEY to be
considered as mentioned in the fields list of
INSERT.
Moved the check up, right after processing the
fields list.
fixes).
The legend: on a replication slave, in case a trigger creation
was filtered out because of application of replicate-do-table/
replicate-ignore-table rule, the parsed definition of a trigger was not
cleaned up properly. LEX::sphead member was left around and leaked
memory. Until the actual implementation of support of
replicate-ignore-table rules for triggers by the patch for Bug 24478 it
was never the case that "case SQLCOM_CREATE_TRIGGER"
was not executed once a trigger was parsed,
so the deletion of lex->sphead there worked and the memory did not leak.
The fix:
The real cause of the bug is that there is no 1 or 2 places where
we can clean up the main LEX after parse. And the reason we
can not have just one or two places where we clean up the LEX is
asymmetric behaviour of MYSQLparse in case of success or error.
One of the root causes of this behaviour is the code in Item::Item()
constructor. There, a newly created item adds itself to THD::free_list
- a single-linked list of Items used in a statement. Yuck. This code
is unaware that we may have more than one statement active at a time,
and always assumes that the free_list of the current statement is
located in THD::free_list. One day we need to be able to explicitly
allocate an item in a given Query_arena.
Thus, when parsing a definition of a stored procedure, like
CREATE PROCEDURE p1() BEGIN SELECT a FROM t1; SELECT b FROM t1; END;
we actually need to reset THD::mem_root, THD::free_list and THD::lex
to parse the nested procedure statement (SELECT *).
The actual reset and restore is implemented in semantic actions
attached to sp_proc_stmt grammar rule.
The problem is that in case of a parsing error inside a nested statement
Bison generated parser would abort immediately, without executing the
restore part of the semantic action. This would leave THD in an
in-the-middle-of-parsing state.
This is why we couldn't have had a single place where we clean up the LEX
after MYSQLparse - in case of an error we needed to do a clean up
immediately, in case of success a clean up could have been delayed.
This left the door open for a memory leak.
One of the following possibilities were considered when working on a fix:
- patch the replication logic to do the clean up. Rejected
as breaks module borders, replication code should not need to know the
gory details of clean up procedure after CREATE TRIGGER.
- wrap MYSQLparse with a function that would do a clean up.
Rejected as ideally we should fix the problem when it happens, not
adjust for it outside of the problematic code.
- make sure MYSQLparse cleans up after itself by invoking the clean up
functionality in the appropriate places before return. Implemented in
this patch.
- use %destructor rule for sp_proc_stmt to restore THD - cleaner
than the prevoius approach, but rejected
because needs a careful analysis of the side effects, and this patch is
for 5.0, and long term we need to use the next alternative anyway
- make sure that sp_proc_stmt doesn't juggle with THD - this is a
large work that will affect many modules.
Cleanup: move main_lex and main_mem_root from Statement to its
only two descendants Prepared_statement and THD. This ensures that
when a Statement instance was created for purposes of statement backup,
we do not involve LEX constructor/destructor, which is fairly expensive.
In order to track that the transformation produces equivalent
functionality please check the respective constructors and destructors
of Statement, Prepared_statement and THD - these members were
used only there.
This cleanup is unrelated to the patch.
Several problems fixed:
1. There was a "catch-all" context initialization in setup_tables()
that was causing the table that we insert into to be visible in the
SELECT part of an INSERT .. SELECT .. statement with no tables in
its FROM clause. This was making sure all the under-initialized
contexts in various parts of the code are not left uninitialized.
Fixed by removing the "catch-all" statement and initializing the
context in the parser.
2. Incomplete name resolution context when resolving the right-hand
values in the ON DUPLICATE KEY UPDATE ... part of an INSERT ... SELECT ...
caused columns from NATURAL JOIN/JOIN USING table references in the
FROM clause of the select to be unavailable.
Fixed by establishing a proper name resolution context.
3. When setting up the special name resolution context for problem 2
there was no check for cases where an aggregate function without a
GROUP BY effectively takes the column from the SELECT part of an
INSERT ... SELECT unavailable for ON DUPLICATE KEY UPDATE.
Fixed by checking for that condition when setting up the name
resolution context.
- Removed not used variables and functions
- Added #ifdef around code that is not used
- Renamed variables and functions to avoid conflicts
- Removed some not used arguments
Fixed some class/struct warnings in ndb
Added define IS_LONGDATA() to simplify code in libmysql.c
I did run gcov on the changes and added 'purecov' comments on almost all lines that was not just variable name changes
Fixed compiler warnings (detected by VC++):
- Removed not used variables
- Added casts
- Fixed wrong assignments to bool
- Fixed wrong calls with bool arguments
- Added missing argument to store(longlong), which caused wrong store method to be called.
(Mostly in DBUG_PRINT() and unused arguments)
Fixed bug in query cache when used with traceing (--with-debug)
Fixed memory leak in mysqldump
Removed warnings from mysqltest scripts (replaced -- with #)
When statement to be prepared contained CREATE PROCEDURE, CREATE FUNCTION
or CREATE TRIGGER statements with a syntax error in it, the preparation
would fail with syntax error message, but the memory could be corrupted.
The problem occurred because we switch memroot when parse stored
routine or trigger definitions, and on parse error we restored the
original memroot only after performing some memory operations. In more
detail:
- prepared statement would activate its own memory root to parse
the definition of the stored procedure.
- SP would reset this memory root with its own memory root to
parse SP statements
- a syntax error would happen
- prepared statement would restore the original memory root
- stored procedure would restore what it thinks was the original
memory root, but actually was the statement memory root.
That led to double free - in destruction of the statement and in
a next call to mysql_parse().
The solution is to restore memroot right after the failed parsing.
Do not consider SHOW commands slow queries, just because they don't use proper indexes.
This bug fix is not needed in 5.1, and the code changes will be null merged. However, the test cases will be propogated up to 5.1.
The executing code had a safety assertion so that it refused to free Items
that it didn't create. However, there is a case, undefined user variables,
which would put Items into the list to be freed.
Instead, do something that is more risky in expectation that the code will
be refactored soon, as Kostja wants to do: Remove the assertions from
prepare() and execute(). Put one assertion at a higher level, before
stmt->set_params_from_vars(), which may then create new to-be-freed Items .
- Use the "%.*b" format when printing prepared and exeuted prepared statements to the log.
- Add test case to check that also prepared statements end up in the query log
Bug#14346 Prepared statements corrupting general log/server memory
- Use "stmt->query" when logging the newly prepared query instead of "packet"