This was a deadlock between ALTER TABLE and another DML statement
(or LOCK TABLES ... READ). ALTER TABLE would wait trying to upgrade
its lock to MDL_EXCLUSIVE and the DML statement would wait trying
to acquire a TL_READ_NO_INSERT table level lock.
This could happen if one connection first acquired a MDL_SHARED_READ
lock on a table. In another connection ALTER TABLE is then started.
ALTER TABLE eventually blocks trying to upgrade to MDL_EXCLUSIVE,
but while holding a TL_WRITE_ALLOW_READ table level lock.
If the first connection then tries to acquire TL_READ_NO_INSERT,
it will block and we have a deadlock since neither connection can
proceed.
This patch fixes the problem by allowing TL_READ_NO_INSERT
locks to be granted if another connection holds TL_WRITE_ALLOW_READ
on the same table. This will allow the DML statement to proceed
such that it eventually can release its MDL lock which in turn
makes ALTER TABLE able to proceed.
Note that TL_READ_NO_INSERT was already partially compatible with
TL_WRITE_ALLOW_READ as the latter would be granted if the former
lock was held. This patch just makes the opposite true as well.
Also note that since ALTER TABLE takes an upgradable MDL lock,
there will be no starvation of ALTER TABLE statements by
statements acquiring TL_READ or TL_READ_NO_INSERT.
Test case added to lock_sync.test.
Add a wait-for graph based deadlock detector to the
MDL subsystem.
Fixes bug #46272 "MySQL 5.4.4, new MDL: unnecessary deadlock" and
bug #37346 "innodb does not detect deadlock between update and
alter table".
The first bug manifested itself as an unwarranted abort of a
transaction with ER_LOCK_DEADLOCK error by a concurrent ALTER
statement, when this transaction tried to repeat use of a
table, which it has already used in a similar fashion before
ALTER started.
The second bug showed up as a deadlock between table-level
locks and InnoDB row locks, which was "detected" only after
innodb_lock_wait_timeout timeout.
A transaction would start using the table and modify a few
rows.
Then ALTER TABLE would come in, and start copying rows
into a temporary table. Eventually it would stumble on
the modified records and get blocked on a row lock.
The first transaction would try to do more updates, and get
blocked on thr_lock.c lock.
This situation of circular wait would only get resolved
by a timeout.
Both these bugs stemmed from inadequate solutions to the
problem of deadlocks occurring between different
locking subsystems.
In the first case we tried to avoid deadlocks between metadata
locking and table-level locking subsystems, when upgrading shared
metadata lock to exclusive one.
Transactions holding the shared lock on the table and waiting for
some table-level lock used to be aborted too aggressively.
We also allowed ALTER TABLE to start in presence of transactions
that modify the subject table. ALTER TABLE acquires
TL_WRITE_ALLOW_READ lock at start, and that block all writes
against the table (naturally, we don't want any writes to be lost
when switching the old and the new table). TL_WRITE_ALLOW_READ
lock, in turn, would block the started transaction on thr_lock.c
lock, should they do more updates. This, again, lead to the need
to abort such transactions.
The second bug occurred simply because we didn't have any
mechanism to detect deadlocks between the table-level locks
in thr_lock.c and row-level locks in InnoDB, other than
innodb_lock_wait_timeout.
This patch solves both these problems by moving lock conflicts
which are causing these deadlocks into the metadata locking
subsystem, thus making it possible to avoid or detect such
deadlocks inside MDL.
To do this we introduce new type-of-operation-aware metadata
locks, which allow MDL subsystem to know not only the fact that
transaction has used or is going to use some object but also what
kind of operation it has carried out or going to carry out on the
object.
This, along with the addition of a special kind of upgradable
metadata lock, allows ALTER TABLE to wait until all
transactions which has updated the table to go away.
This solves the second issue.
Another special type of upgradable metadata lock is acquired
by LOCK TABLE WRITE. This second lock type allows to solve the
first issue, since abortion of table-level locks in event of
DDL under LOCK TABLES becomes also unnecessary.
Below follows the list of incompatible changes introduced by
this patch:
- From now on, ALTER TABLE and CREATE/DROP TRIGGER SQL (i.e. those
statements that acquire TL_WRITE_ALLOW_READ lock)
wait for all transactions which has *updated* the table to
complete.
- From now on, LOCK TABLES ... WRITE, REPAIR/OPTIMIZE TABLE
(i.e. all statements which acquire TL_WRITE table-level lock) wait
for all transaction which *updated or read* from the table
to complete.
As a consequence, innodb_table_locks=0 option no longer applies
to LOCK TABLES ... WRITE.
- DROP DATABASE, DROP TABLE, RENAME TABLE no longer abort
statements or transactions which use tables being dropped or
renamed, and instead wait for these transactions to complete.
- Since LOCK TABLES WRITE now takes a special metadata lock,
not compatible with with reads or writes against the subject table
and transaction-wide, thr_lock.c deadlock avoidance algorithm
that used to ensure absence of deadlocks between LOCK TABLES
WRITE and other statements is no longer sufficient, even for
MyISAM. The wait-for graph based deadlock detector of MDL
subsystem may sometimes be necessary and is involved. This may
lead to ER_LOCK_DEADLOCK error produced for multi-statement
transactions even if these only use MyISAM:
session 1: session 2:
begin;
update t1 ... lock table t2 write, t1 write;
-- gets a lock on t2, blocks on t1
update t2 ...
(ER_LOCK_DEADLOCK)
- Finally, support of LOW_PRIORITY option for LOCK TABLES ... WRITE
was abandoned.
LOCK TABLE ... LOW_PRIORITY WRITE from now on has the same
priority as the usual LOCK TABLE ... WRITE.
SELECT HIGH PRIORITY no longer trumps LOCK TABLE ... WRITE in
the wait queue.
- We do not take upgradable metadata locks on implicitly
locked tables. So if one has, say, a view v1 that uses
table t1, and issues:
LOCK TABLE v1 WRITE;
FLUSH TABLE t1; -- (or just 'FLUSH TABLES'),
an error is produced.
In order to be able to perform DDL on a table under LOCK TABLES,
the table must be locked explicitly in the LOCK TABLES list.
Concurrent execution of statements which require non-table-level
write locks on several instances of the same table (such as
SELECT ... FOR UPDATE which uses same InnoDB table twice or a DML
statement which invokes trigger which tries to update same InnoDB
table directly and through stored function) and statements which
required table-level locks on this table (e.g. LOCK TABLE ... WRITE,
ALTER TABLE, ...) might have resulted in a deadlock.
The problem occured when a thread tried to acquire write lock
(TL_WRITE_ALLOW_WRITE) on the table but had to wait since there was
a pending write lock (TL_WRITE, TL_WRITE_ALLOW_READ) on this table
and we failed to detect that this thread already had another instance
of write lock on it (so in fact we were trying to acquire recursive
lock) because there was also another thread holding write lock on the
table (also TL_WRITE_ALLOW_WRITE). When the latter thread released
its lock neither the first thread nor the thread trying to acquire
TL_WRITE/TL_WRITE_ALLOW_READ were woken up (as table was still write
locked by the first thread) so we ended up with a deadlock.
This patch solves this problem by ensuring that thread which
already has write lock on the table won't wait when it tries
to acquire second write lock on the same table.