Part#2, variant 2: Make the printed r_ values in JSON output consistent.
After this patch, ANALYZE output has:
- r_index_rows (NEW) - Observed number of rows before ICP or Rowid Filtering
checks. This is a per-scan average. like r_rows and "rows" are.
- r_rows (AS BEFORE) - Observed number of rows after ICP and Rowid Filtering.
- r_icp_filtered (NEW) - Observed selectivity of ICP condition.
- (AS BEFORE) observed selectivity of Rowid Filter is in
$.rowid_filter.r_selectivity_pct
- r_total_filtered - Observed combined selectivity: fraction of rows left
after applying ICP condition, Rowid Filter, and attached_condition.
This is now comparable with "filtered" and is printed right after it.
- r_filtered (AS BEFORE) - Observed selectivity of "attached_condition".
Tabular ANALYZE output is not changed. Note that JSON's r_filtered and
r_rows have the same meanings as before and have the same meaning as in
tabular output.
WITH TIES would not take effect if SELECT DISTINCT was used in a
context where an INDEX is used to resolve the ORDER BY clause.
WITH TIES relies on the `JOIN::order` to contain the non-constant
fields to test the equality of ORDER BY fiels required for WITH TIES.
The cause of the problem was a premature removal of the `JOIN::order`
member during a DISTINCT optimization. This lead to WITH TIES code assuming
ORDER BY only contained "constant" elements.
Disable this optimization when WITH TIES is in effect.
(side-note: the order by removal does not impact any current tests, thus
it will be removed in a future version)
Reviewed by: monty@mariadb.org
This includes all test changes from
"Changing all cost calculation to be given in milliseconds"
and forwards.
Some of the things that caused changes in the result files:
- As part of fixing tests, I added 'echo' to some comments to be able to
easier find out where things where wrong.
- MATERIALIZED has now a higher cost compared to X than before. Because
of this some MATERIALIZED types have changed to DEPENDEND SUBQUERY.
- Some test cases that required MATERIALIZED to repeat a bug was
changed by adding more rows to force MATERIALIZED to happen.
- 'Filtered' in SHOW EXPLAIN has in many case changed from 100.00 to
something smaller. This is because now filtered also takes into
account the smallest possible ref access and filters, even if they
where not used. Another reason for 'Filtered' being smaller is that
we now also take into account implicit filtering done for subqueries
using FIRSTMATCH.
(main.subselect_no_exists_to_in)
This is caluculated in best_access_path() and stored in records_out.
- Table orders has changed because more accurate costs.
- 'index' and 'ALL' for small tables has changed to use 'range' or
'ref' because of optimizer_scan_setup_cost.
- index can be changed to 'range' as 'range' optimizer assumes we don't
have to read the blocks from disk that range optimizer has already read.
This can be confusing in the case where there is no obvious where clause
but instead there is a hidden 'key_column > NULL' added by the optimizer.
(main.subselect_no_exists_to_in)
- Scan on primary clustered key does not report 'Using Index' anymore
(It's a table scan, not an index scan).
- For derived tables, the number of rows is now 100 instead of 2,
which can be seen in EXPLAIN.
- More tests have "Using index for group by" as the cost of this
optimization is now more correct (lower).
- A primary key could be preferred for a normal key, even if it would
access more rows, as it's faster to do 1 lokoup and 3 'index_next' on a
clustered primary key than one lookup trough a secondary.
(main.stat_tables_innodb)
Notes:
- There was a 4.7% more calls to best_extension_by_limited_search() in
the main.greedy_optimizer test. However examining the test results
it looked that the plans where slightly better (eq_ref where more
chained together) so I assume this is ok.
- I have verified a few test cases where there was notable/unexpected
changes in the plan and in all cases the new optimizer plans where
faster. (main.greedy_optimizer and some others)
This makes it easier to compare different costs and also allows
the optimizer to optimizer different storage engines more reliably.
- Added tests/check_costs.pl, a tool to verify optimizer cost calculations.
- Most engine costs has been found with this program. All steps to
calculate the new costs are documented in Docs/optimizer_costs.txt
- User optimizer_cost variables are given in microseconds (as individual
costs can be very small). Internally they are stored in ms.
- Changed DISK_READ_COST (was DISK_SEEK_BASE_COST) from a hard disk cost
(9 ms) to common SSD cost (400MB/sec).
- Removed cost calculations for hard disks (rotation etc).
- Changed the following handler functions to return IO_AND_CPU_COST.
This makes it easy to apply different cost modifiers in ha_..time()
functions for io and cpu costs.
- scan_time()
- rnd_pos_time() & rnd_pos_call_time()
- keyread_time()
- Enhanched keyread_time() to calculate the full cost of reading of a set
of keys with a given number of ranges and optional number of blocks that
need to be accessed.
- Removed read_time() as keyread_time() + rnd_pos_time() can do the same
thing and more.
- Tuned cost for: heap, myisam, Aria, InnoDB, archive and MyRocks.
Used heap table costs for json_table. The rest are using default engine
costs.
- Added the following new optimizer variables:
- optimizer_disk_read_ratio
- optimizer_disk_read_cost
- optimizer_key_lookup_cost
- optimizer_row_lookup_cost
- optimizer_row_next_find_cost
- optimizer_scan_cost
- Moved all engine specific cost to OPTIMIZER_COSTS structure.
- Changed costs to use 'records_out' instead of 'records_read' when
recalculating costs.
- Split optimizer_costs.h to optimizer_costs.h and optimizer_defaults.h.
This allows one to change costs without having to compile a lot of
files.
- Updated costs for filter lookup.
- Use a better cost estimate in best_extension_by_limited_search()
for the sorting cost.
- Fixed previous issues with 'filtered' explain column as we are now
using 'records_out' (min rows seen for table) to calculate filtering.
This greatly simplifies the filtering code in
JOIN_TAB::save_explain_data().
This change caused a lot of queries to be optimized differently than
before, which exposed different issues in the optimizer that needs to
be fixed. These fixes are in the following commits. To not have to
change the same test case over and over again, the changes in the test
cases are done in a single commit after all the critical change sets
are done.
InnoDB changes:
- Updated InnoDB to not divide big range cost with 2.
- Added cost for InnoDB (innobase_update_optimizer_costs()).
- Don't mark clustered primary key with HA_KEYREAD_ONLY. This will
prevent that the optimizer is trying to use index-only scans on
the clustered key.
- Disabled ha_innobase::scan_time() and ha_innobase::read_time() and
ha_innobase::rnd_pos_time() as the default engine cost functions now
works good for InnoDB.
Other things:
- Added --show-query-costs (\Q) option to mysql.cc to show the query
cost after each query (good when working with query costs).
- Extended my_getopt with GET_ADJUSTED_VALUE which allows one to adjust
the value that user is given. This is used to change cost from
microseconds (user input) to milliseconds (what the server is
internally using).
- Added include/my_tracker.h ; Useful include file to quickly test
costs of a function.
- Use handler::set_table() in all places instead of 'table= arg'.
- Added SHOW_OPTIMIZER_COSTS to sys variables. These are input and
shown in microseconds for the user but stored as milliseconds.
This is to make the numbers easier to read for the user (less
pre-zeros). Implemented in 'Sys_var_optimizer_cost' class.
- In test_quick_select() do not use index scans if 'no_keyread' is set
for the table. This is what we do in other places of the server.
- Added THD parameter to Unique::get_use_cost() and
check_index_intersect_extension() and similar functions to be able
to provide costs to called functions.
- Changed 'records' to 'rows' in optimizer_trace.
- Write more information to optimizer_trace.
- Added INDEX_BLOCK_FILL_FACTOR_MUL (4) and INDEX_BLOCK_FILL_FACTOR_DIV (3)
to calculate usage space of keys in b-trees. (Before we used numeric
constants).
- Removed code that assumed that b-trees has similar costs as binary
trees. Replaced with engine calls that returns the cost.
- Added Bitmap::find_first_bit()
- Added timings to join_cache for ANALYZE table (patch by Sergei Petrunia).
- Added records_init and records_after_filter to POSITION to remember
more of what best_access_patch() calculates.
- table_after_join_selectivity() changed to recalculate 'records_out'
based on the new fields from best_access_patch()
Bug fixes:
- Some queries did not update last_query_cost (was 0). Fixed by moving
setting thd->...last_query_cost in JOIN::optimize().
- Write '0' as number of rows for const tables with a matching row.
Some internals:
- Engine cost are stored in OPTIMIZER_COSTS structure. When a
handlerton is created, we also created a new cost variable for the
handlerton. We also create a new variable if the user changes a
optimizer cost for a not yet loaded handlerton either with command
line arguments or with SET
@@global.engine.optimizer_cost_variable=xx.
- There are 3 global OPTIMIZER_COSTS variables:
default_optimizer_costs The default costs + changes from the
command line without an engine specifier.
heap_optimizer_costs Heap table costs, used for temporary tables
tmp_table_optimizer_costs The cost for the default on disk internal
temporary table (MyISAM or Aria)
- The engine cost for a table is stored in table_share. To speed up
accesses the handler has a pointer to this. The cost is copied
to the table on first access. If one wants to change the cost one
must first update the global engine cost and then do a FLUSH TABLES.
This was done to be able to access the costs for an open table
without any locks.
- When a handlerton is created, the cost are updated the following way:
See sql/keycaches.cc for details:
- Use 'default_optimizer_costs' as a base
- Call hton->update_optimizer_costs() to override with the engines
default costs.
- Override the costs that the user has specified for the engine.
- One handler open, copy the engine cost from handlerton to TABLE_SHARE.
- Call handler::update_optimizer_costs() to allow the engine to update
cost for this particular table.
- There are two costs stored in THD. These are copied to the handler
when the table is used in a query:
- optimizer_where_cost
- optimizer_scan_setup_cost
- Simply code in best_access_path() by storing all cost result in a
structure. (Idea/Suggestion by Igor)
This is a rework of how filesort calculates costs to allow functions
like test_if_skip_sort_order() to calculate the cost of filesort to
decide between filesort and using a key to resolve ORDER BY.
Changes:
- Split cost calculation of qsort + optional merge sort and priority queue
to dedicated functions.
- Fixed some wrong calculations of cost in old code (use of log() instead
of log2()).
- Added costs realted to fetching the rows if addon fields are not used.
- Updated get_merge_cost() to take into account that we are going to
read data from temporary files in big chuncks (DISK_CHUNCK_SIZE (64K) and
not in IO_SIZE (4K).
- More code documentation including various variables in Sort_param.
One effect of the cost update is that the cost of priority queue
with addon field has decreased slightly and is used in more cases.
When the rowid is large (like with InnoDB where rowid is the priority key),
using addon fields is in many cases preferable.
Reviewer: Monty
The old code did not't correctly add TIME_FOR_COMPARE to rows that are
part of the scan that will be compared with the attached where clause.
Now the cost calculation for hash join and full join cache join are
identical except for HASH_FANOUT (10%)
The cost for a join with keys is now also uniform.
The total cost for a using a key for lookup is calculated in one place as:
(cost_of_finding_rows_through_key(records) + records/TIME_FOR_COMPARE)*
record_count_of_previous_row_combinations + startup_cost
startup_cost is the cost of a creating a temporary table (if needed)
Best_cost now includes the cost of comparing all WHERE clauses and also
cost of joining with previous row combinations.
Other things:
- Optimizer trace is now printing the total costs, including testing the
WHERE clause (TIME_FOR_COMPARE) and comparing with all previous rows.
- In optimizer trace, include also total cost of query together with the
final join order. This makes it easier to find out where the cost was
calculated.
- Old code used filter even if the cost for it was higher than not using a
filter. This is not corrected.
- When rebasing on 10.11, I noticed some changes to access_cost_factor
calculation. These changes was not picked as the coming changes
to filtering will make that code obsolete.
Pushing LIMIT to temp aggregation table is possible, but not when WITH
TIES is used. In a degenerate case with constant ORDER BY, the constant
gets removed and the code assumed the limit is push-able.
Ensure that if WITH TIES is present, that this does not happen.
This commit implements the standard SQL extension
OFFSET start { ROW | ROWS }
[FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } { ONLY | WITH TIES }]
To achieve this a reserved keyword OFFSET is introduced.
The general logic for WITH TIES implies:
1. The number of rows a query returns is no longer known during optimize
phase. Adjust optimizations to no longer consider this.
2. During end_send make use of an "order Cached_item"to compare if the
ORDER BY columns changed. Keep returning rows until there is a
change. This happens only after we reached the row limit.
3. Within end_send_group, the order by clause was eliminated. It is
still possible to keep the optimization of using end_send_group for
producing the final result set.