Encryption stores used key_version to
FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION (offset 26)
field. Spatial indexes store RTREE Split Sequence Number
(FIL_RTREE_SPLIT_SEQ_NUM) in the same field. Both values
can't be stored in same field. Thus, current encryption
implementation does not support encrypting spatial indexes.
fil_space_encrypt(): Do not encrypt page if page type is
FIL_PAGE_RTREE (this is required for background
encryption innodb-encrypt-tables=ON).
create_table_info_t::check_table_options() Do not allow creating
table with ENCRYPTED=YES if table contains spatial index.
recv_log_format_0_recover(): Invoke log_decrypt_after_read() after
reading the old-format redo log buffer.
With this change, we will upgrade to an encrypted redo log that
is misleadingly carrying a MySQL 5.7.9 compatible format tag while
the log blocks (other than the header and the checkpoint blocks)
are in an incompatible, encrypted format.
That needs to be fixed by introducing a new redo log format tag that
indicates that the entire redo log is encrypted.
LOG_CHECKPOINT_ARRAY_END, LOG_CHECKPOINT_SIZE: Remove.
Change some error messages to refer to MariaDB 10.2.2 instead of
MySQL 5.7.9.
recv_find_max_checkpoint_0(): Do not abort when decrypting one of the
checkpoint pages fails.
Problem was that implementation merged from 10.1 was incompatible
with InnoDB 5.7.
buf0buf.cc: Add functions to return should we punch hole and
how big.
buf0flu.cc: Add written page to IORequest
fil0fil.cc: Remove unneeded status call and add test is
sparse files and punch hole supported by file system when
tablespace is created. Add call to get file system
block size. Used file node is added to IORequest. Added
functions to check is punch hole supported and setting
punch hole.
ha_innodb.cc: Remove unneeded status variables (trim512-32768)
and trim_op_saved. Deprecate innodb_use_trim and
set it ON by default. Add function to set innodb-use-trim
dynamically.
dberr.h: Add error code DB_IO_NO_PUNCH_HOLE
if punch hole operation fails.
fil0fil.h: Add punch_hole variable to fil_space_t and
block size to fil_node_t.
os0api.h: Header to helper functions on buf0buf.cc and
fil0fil.cc for os0file.h
os0file.h: Remove unneeded m_block_size from IORequest
and add bpage to IORequest to know actual size of
the block and m_fil_node to know tablespace file
system block size and does it support punch hole.
os0file.cc: Add function punch_hole() to IORequest
to do punch_hole operation,
get the file system block size and determine
does file system support sparse files (for punch hole).
page0size.h: remove implicit copy disable and
use this implicit copy to implement copy_from()
function.
buf0dblwr.cc, buf0flu.cc, buf0rea.cc, fil0fil.cc, fil0fil.h,
os0file.h, os0file.cc, log0log.cc, log0recv.cc:
Remove unneeded write_size parameter from fil_io
calls.
srv0mon.h, srv0srv.h, srv0mon.cc: Remove unneeded
trim512-trim32678 status variables. Removed
these from monitor tests.
Most notably, this includes MDEV-11623, which includes a fix and
an upgrade procedure for the InnoDB file format incompatibility
that is present in MariaDB Server 10.1.0 through 10.1.20.
In other words, this merge should address
MDEV-11202 InnoDB 10.1 -> 10.2 migration does not work
innodb_file_format=Barracuda is the default in MariaDB 10.2.
Do not set it, because the option will be removed in MariaDB 10.3.
Also, do not set innodb_file_per_table=1 because it is the default.
Note that MDEV-11828 should fix the test innodb.innodb-64k
already in 10.1.
The function fsp_flags_try_adjust(), which is called on startup,
is incrementing the Innodb_pages0_read counts for every affected file.
Adjust the result of encryption.innodb_lotoftables accordingly.
Test crash recovery from an encrypted redo log with innodb_encrypt_log=0.
Previously, we did a clean shutdown, so only the log checkpoint
information would have been read from the redo log. With this change,
we will be reading and applying encrypted redo log records.
include/start_mysqld.inc: Observe $restart_parameters.
encryption.innodb-log-encrypt: Remove some unnecessary statements,
and instead of restarting the server and concurrently accessing
the files while the server is running, kill the server, check the
files, and finally start up the server.
innodb.log_data_file_size: Use start_mysqld.inc with $restart_parameters.
Perform a slow shutdown at the start of the test, and create all
InnoDB tables with STATS_PERSISTENT=0, so that any I/O related to
background tasks (change buffer merge, purge, persistent statistics)
should be eliminated.
encryption.innodb_scrub: Clean up. Make it also cover ROW_FORMAT=COMPRESSED,
removing the need for encryption.innodb_scrub_compressed.
Add a FIXME comment saying that we should create a secondary index, to
demonstrate that also undo log pages get scrubbed. Currently that is
not working!
Also clean up encryption.innodb_scrub_background, but keep it disabled,
because the background scrubbing does not work reliably.
Fix both tests so that if something is not scrubbed, the test will be
aborted, so that the data files will be preserved. Allow the tests to
run on Windows as well.
10.1 is merged into 10.2 now. Two issues are left to fix:
(1) encryption.innochecksum test
(2) read_page0 vs page_0_crypt_read
(1) innochecksum tool did not compile after merge because
buf_page_is_corrupted uses fil_crypt_t that has been changed.
extra/CMakeLists.txt: Added fil/fil0crypt.cc as dependency
as we need to use fil_crypt_verify_checksum for encrypted pages.
innochecksum.cc: If we think page is encrypted i.e.
FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION != 0 we call
fil_crypt_verify_checksum() function to compare calculated
checksum to stored checksum calculated after encryption
(this is stored on different offset i.e.
FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION + 4).
If checksum does not match we call normal buf_page_is_corrupted
to compare calculated checksum to stored checksum.
fil0crypt.cc: add #ifdef UNIV_INNOCHECKSUM to be able to compile
this file for innochecksum tool.
(2) read_page0 is not needed and thus removed.
Problem was that log_scrub function did not take required log_sys mutex.
Background: Unused space in log blocks are padded with MLOG_DUMMY_RECORD if innodb-scrub-log
is enabled. As log files are written on circular fashion old log blocks can be reused
later for new redo-log entries. Scrubbing pads unused space in log blocks to avoid visibility
of the possible old redo-log contents.
log_scrub(): Take log_sys mutex
log_pad_current_log_block(): Increase srv_stats.n_log_scrubs if padding is done.
srv0srv.cc: Set srv_stats.n_log_scrubs to export vars innodb_scrub_log
ha_innodb.cc: Export innodb_scrub_log to global status.
* some of these tests run just fine with InnoDB:
-> s/have_xtradb/have_innodb/
* sys_var tests did basic tests for xtradb only variables
-> remove them, they're useless anyway (sysvar_innodb does it better)
* multi_update had innodb specific tests
-> move to multi_update_innodb.test
Problem was that for encryption we use temporary scratch area for
reading and writing tablespace pages. But if page was not really
decrypted the correct updated page was not moved to scratch area
that was then written. This can happen e.g. for page 0 as it is
newer encrypted even if encryption is enabled and as we write
the contents of old page 0 to tablespace it contained naturally
incorrect space_id that is then later noted and error message
was written. Updated page with correct space_id was lost.
If tablespace is encrypted we use additional
temporary scratch area where pages are read
for decrypting readptr == crypt_io_buffer != io_buffer.
Destination for decryption is a buffer pool block
block->frame == dst == io_buffer that is updated.
Pages that did not require decryption even when
tablespace is marked as encrypted are not copied
instead block->frame is set to src == readptr.
If tablespace was encrypted we copy updated page to
writeptr != io_buffer. This fixes above bug.
For encryption we again use temporary scratch area
writeptr != io_buffer == dst
that is then written to the tablespace
(1) For normal tables src == dst == writeptr
ut_ad(!encrypted && !page_compressed ?
src == dst && dst == writeptr + (i * size):1);
(2) For page compressed tables src == dst == writeptr
ut_ad(page_compressed && !encrypted ?
src == dst && dst == writeptr + (i * size):1);
(3) For encrypted tables src != dst != writeptr
ut_ad(encrypted ?
src != dst && dst != writeptr + (i * size):1);
MySQL 5.7 supports only one shared temporary tablespace.
MariaDB 10.2 does not support any other shared InnoDB tablespaces than
the two predefined tablespaces: the persistent InnoDB system tablespace
(default file name ibdata1) and the temporary tablespace
(default file name ibtmp1).
InnoDB is unnecessarily allocating a tablespace ID for the predefined
temporary tablespace on every startup, and it is in several places
testing whether a tablespace ID matches this dynamically generated ID.
We should use a compile-time constant to reduce code size and to avoid
unnecessary updates to the DICT_HDR page at every startup.
Using a hard-coded tablespace ID will should make it easier to remove the
TEMPORARY flag from FSP_SPACE_FLAGS in MDEV-11202.
Two problems:
(1) When pushing warning to sql-layer we need to check that thd != NULL
to avoid NULL-pointer reference.
(2) At tablespace key rotation if used key_id is not found from
encryption plugin tablespace should not be rotated.
- Fixed compiler warnings
- Removed have_debug.inc from innochecksum_3
- Fixed race condition in innodb_buffer_pool_load
- Fixed merge issue in innodb-bad-key-change.test
- Fixed missing array allocation that could cause
function_defaults_notembedded to fail
- Fixed thread_cache_size_func
Analysis: By design InnoDB was reading first page of every .ibd file
at startup to find out is tablespace encrypted or not. This is
because tablespace could have been encrypted always, not
encrypted newer or encrypted based on configuration and this
information can be find realible only from first page of .ibd file.
Fix: Do not read first page of every .ibd file at startup. Instead
whenever tablespace is first time accedded we will read the first
page to find necessary information about tablespace encryption
status.
TODO: Add support for SYS_TABLEOPTIONS where all table options
encryption information included will be stored.
Fixed auto_increment_dup test. Current behavior is correct for repeatable read (and
serializable) isolation levels. Old behavior is correct for read committed
isolation level.
Contains also
MDEV-10547: Test multi_update_innodb fails with InnoDB 5.7
The failure happened because 5.7 has changed the signature of
the bool handler::primary_key_is_clustered() const
virtual function ("const" was added). InnoDB was using the old
signature which caused the function not to be used.
MDEV-10550: Parallel replication lock waits/deadlock handling does not work with InnoDB 5.7
Fixed mutexing problem on lock_trx_handle_wait. Note that
rpl_parallel and rpl_optimistic_parallel tests still
fail.
MDEV-10156 : Group commit tests fail on 10.2 InnoDB (branch bb-10.2-jan)
Reason: incorrect merge
MDEV-10550: Parallel replication can't sync with master in InnoDB 5.7 (branch bb-10.2-jan)
Reason: incorrect merge
Print default values for BLOB's.
This is a part commit for automatic changes to make the real commit smaller.
All changes here are related to that we now print DEFAULT NULL for blob and
text fields, like we do for all other fields.
Analysis:
-- InnoDB has n (>0) redo-log files.
-- In the first page of redo-log there is 2 checkpoint records on fixed location (checkpoint is not encrypted)
-- On every checkpoint record there is up to 5 crypt_keys containing the keys used for encryption/decryption
-- On crash recovery we read all checkpoints on every file
-- Recovery starts by reading from the latest checkpoint forward
-- Problem is that latest checkpoint might not always contain the key we need to decrypt all the
redo-log blocks (see MDEV-9422 for one example)
-- Furthermore, there is no way to identify is the log block corrupted or encrypted
For example checkpoint can contain following keys :
write chk: 4 [ chk key ]: [ 5 1 ] [ 4 1 ] [ 3 1 ] [ 2 1 ] [ 1 1 ]
so over time we could have a checkpoint
write chk: 13 [ chk key ]: [ 14 1 ] [ 13 1 ] [ 12 1 ] [ 11 1 ] [ 10 1 ]
killall -9 mysqld causes crash recovery and on crash recovery we read as
many checkpoints as there is log files, e.g.
read [ chk key ]: [ 13 1 ] [ 12 1 ] [ 11 1 ] [ 10 1 ] [ 9 1 ]
read [ chk key ]: [ 14 1 ] [ 13 1 ] [ 12 1 ] [ 11 1 ] [ 10 1 ] [ 9 1 ]
This is problematic, as we could still scan log blocks e.g. from checkpoint 4 and we do
not know anymore the correct key.
CRYPT INFO: for checkpoint 14 search 4
CRYPT INFO: for checkpoint 13 search 4
CRYPT INFO: for checkpoint 12 search 4
CRYPT INFO: for checkpoint 11 search 4
CRYPT INFO: for checkpoint 10 search 4
CRYPT INFO: for checkpoint 9 search 4 (NOTE: NOT FOUND)
For every checkpoint, code generated a new encrypted key based on key
from encryption plugin and random numbers. Only random numbers are
stored on checkpoint.
Fix: Generate only one key for every log file. If checkpoint contains only
one key, use that key to encrypt/decrypt all log blocks. If checkpoint
contains more than one key (this is case for databases created
using MariaDB server version 10.1.0 - 10.1.12 if log encryption was
used). If looked checkpoint_no is found from keys on checkpoint we use
that key to decrypt the log block. For encryption we use always the
first key. If the looked checkpoint_no is not found from keys on checkpoint
we use the first key.
Modified code also so that if log is not encrypted, we do not generate
any empty keys. If we have a log block and no keys is found from
checkpoint we assume that log block is unencrypted. Log corruption or
missing keys is found by comparing log block checksums. If we have
a keys but current log block checksum is correct we again assume
log block to be unencrypted. This is because current implementation
stores checksum only before encryption and new checksum after
encryption but before disk write is not stored anywhere.