Problem: we may get syntactically incorrect queries in the binary log
if we use a string value user variable executing a PS which
contains '... limit ?' clause, e.g.
prepare s from "select 1 limit ?";
set @a='qwe'; execute s using @a;
Fix: raise an error in such cases.
Made year 2000 handling more uniform
Removed year 2000 handling out from calc_days()
The above removes some bugs in date/datetimes with year between 0 and 200
Now we get a note when we insert a datetime value into a date column
For default values to CREATE, don't give errors for warning level NOTE
Fixed some compiler failures
Added library ws2_32 for windows compilation (needed if we want to compile with IOCP support)
Removed duplicate typedef TIME and replaced it with MYSQL_TIME
Better (more complete) fix for: Bug#21103 "DATE column not compared as DATE"
Fixed properly Bug#18997 "DATE_ADD and DATE_SUB perform year2K autoconversion magic on 4-digit year value"
Fixed Bug#23093 "Implicit conversion of 9912101 to date does not match cast(9912101 as date)"
The LEAST/GREATEST functions compared DATE/DATETIME values as
strings which in some cases could lead to a wrong result.
A new member function called cmp_datetimes() is added to the
Item_func_min_max class. It compares arguments in DATETIME context
and returns index of the least/greatest argument.
The Item_func_min_max::fix_length_and_dec() function now detects when
arguments should be compared in DATETIME context and sets the newly
added flag compare_as_dates. It indicates that the cmp_datetimes() function
should be called to get a correct result.
Item_func_min_max::val_xxx() methods are corrected to call the
cmp_datetimes() function when needed.
Objects of the Item_splocal class now stores and reports correct original
field type.
Before this fix, the parser would sometime change where a token starts by
altering Lex_input_string::tok_start, which later confused the code in
sql_yacc.yy that needs to capture the source code of a SQL statement,
like to represent the body of a stored procedure.
This line of code in sql_lex.cc :
case MY_LEX_USER_VARIABLE_DELIMITER:
lip->tok_start= lip->ptr; // Skip first `
would <skip the first back quote> ... and cause the bug reported.
In general, the responsibility of sql_lex.cc is to *find* where token are
in the SQL text, but is *not* to make up fake or incomplete tokens.
With a quoted label like `my_label`, the token starts on the first quote.
Extracting the token value should not change that (it did).
With this fix, the lexical analysis has been cleaned up to not change
lip->tok_start (in the case found for this bug).
The functions get_token() and get_quoted_token() now have an extra
parameters, used when some characters from the beginning of the token need
to be skipped when extracting a token value, like when extracting 'AB' from
'0xAB', for example, for a HEX_NUM token.
This exposed a bad assumption in Item_hex_string and Item_bin_string,
which has been fixed:
The assumption was that the string given, 'AB', was in fact preceded in
memory by '0x', which might be false (it can be preceded by "x'" and
followed by "'" -- or not be preceded by valid memory at all)
If a name is needed for Item_hex_string or Item_bin_string, the name is
taken from the original and true source code ('0xAB'), and assigned in
the select_item rule, instead of relying on assumptions related to how
memory is used.
DATE and DATETIME can be compared either as strings or as int. Both
methods have their disadvantages. Strings can contain valid DATETIME value
but have insignificant zeros omitted thus became non-comparable with
other DATETIME strings. The comparison as int usually will require conversion
from the string representation and the automatic conversion in most cases is
carried out in a wrong way thus producing wrong comparison result. Another
problem occurs when one tries to compare DATE field with a DATETIME constant.
The constant is converted to DATE losing its precision i.e. losing time part.
This fix addresses the problems described above by adding a special
DATE/DATETIME comparator. The comparator correctly converts DATE/DATETIME
string values to int when it's necessary, adds zero time part (00:00:00)
to DATE values to compare them correctly to DATETIME values. Due to correct
conversion malformed DATETIME string values are correctly compared to other
DATE/DATETIME values.
As of this patch a DATE value equals to DATETIME value with zero time part.
For example '2001-01-01' equals to '2001-01-01 00:00:00'.
The compare_datetime() function is added to the Arg_comparator class.
It implements the correct comparator for DATE/DATETIME values.
Two supplementary functions called get_date_from_str() and get_datetime_value()
are added. The first one extracts DATE/DATETIME value from a string and the
second one retrieves the correct DATE/DATETIME value from an item.
The new Arg_comparator::can_compare_as_dates() function is added and used
to check whether two given items can be compared by the compare_datetime()
comparator.
Two caching variables were added to the Arg_comparator class to speedup the
DATE/DATETIME comparison.
One more store() method was added to the Item_cache_int class to cache int
values.
The new is_datetime() function was added to the Item class. It indicates
whether the item returns a DATE/DATETIME value.
Validity checks for nested set functions
were not taking into account that the enclosed
set function may be on a nest level that is
lower than the nest level of the enclosing set
function.
Fixed by :
- propagating max_sum_func_level
up the enclosing set functions chain.
- updating the max_sum_func_level of the
enclosing set function when the enclosed set
function is aggregated above or on the same
nest level of as the level of the enclosing
set function.
- updating the max_arg_level of the enclosing
set function on a reference that refers to
an item above or on the same nest level
as the level of the enclosing set function.
- Treating both Item_field and Item_ref as possibly
referencing items from outer nest levels.
The Item_outer_ref class based on the Item_direct_ref class was always used
to represent an outer field. But if the outer select is a grouping one and the
outer field isn't under an aggregate function which is aggregated in that
outer select an Item_ref object should be used to represent such a field.
If the outer select in which the outer field is resolved isn't grouping then
the Item_field class should be used to represent such a field.
This logic also should be used for an outer field resolved through its alias
name.
Now the Item_field::fix_outer_field() uses Item_outer_field objects to
represent aliased and non-aliased outer fields for grouping outer selects
only.
Now the fix_inner_refs() function chooses which class to use to access outer
field - the Item_ref or the Item_direct_ref. An object of the chosen class
substitutes the original field in the Item_outer_ref object.
The direct_ref and the found_in_select_list fields were added to the
Item_outer_ref class.
Geometry fields have a result type string and a
special subclass to cater for the differences
between them and the base class (just like
DATE/TIME).
When creating temporary tables for results of
functions that return results of type GEOMETRY
we must construct fields of the derived class
instead of the base class.
Fixed by creating a GEOMETRY field (Field_geom)
instead of a generic BLOB (Field_blob) in temp
tables for the results of GIS functions that
have GEOMETRY return type (Item_geometry_func).
context was used as an argument of GROUP_CONCAT.
Ensured correct setting of the depended_from field in references
generated for set functions aggregated in outer selects.
A wrong value of this field resulted in wrong maps returned by
used_tables() for these references.
Made sure that a temporary table field is added for any set function
aggregated in outer context when creation of a temporary table is
needed to execute the inner subquery.
The problem in this bug is when we create temporary tables. When
temporary tables are created for unions, there is some
inferrence being carried out regarding the type of the column.
Whenever this column type is inferred to be REAL (i.e. FLOAT or
DOUBLE), MySQL will always try to maintain exact precision, and
if that is not possible (there are hardware limits, since FLOAT
and DOUBLE are stored as approximate values) will switch to
using approximate values. The problem here is that at this point
the information about number of significant digits is not
available. Furthermore, the number of significant digits should
be increased for the AVG function, however, this was not properly
handled. There are 4 parts to the problem:
#1: DOUBLE and FLOAT fields don't display their proper display
lengths in max_display_length(). This is hard-coded as 53 for
DOUBLE and 24 for FLOAT. Now changed to instead return the
field_length.
#2: Type holders for temporary tables do not preserve the
max_length of the Item's from which they are created, and is
instead reverted to the 53 and 24 from above. This causes
*all* fields to get non-fixed significant digits.
#3: AVG function does not update max_length (display length)
when updating number of decimals.
#4: The function that switches to non-fixed number of
significant digits should use DBL_DIG + 2 or FLT_DIG + 2 as
cut-off values (Since fixed precision does not use the 'e'
notation)
Of these points, #1 is the controversial one, but this
change is preferred and has been cleared with Monty. The
function causes quite a few unit tests to blow up and they had
to b changed, but each one is annotated and motivated. We
frequently see the magical 53 and 24 give way to more relevant
numbers.
after single-row table substitution could lead to a wrong result set.
The bug happened because the function Item_field::replace_equal_field
erroniously assumed that any field included in a multiple equality
with a constant has been already substituted for this constant.
This not true for fields becoming constant after row substitutions
for constant tables.
construct references invalid name.
Derived tables currently cannot use outer references.
Thus there is no outer context for them.
The 4.1 code takes this fact into account while the
Item_field::fix_outer_field code of 5.0 lost the check that blocks
any attempts to resolve names in outer context for derived tables.
The flag alias_name_used was not set on for the outer references
in subqueries. It resulted in replacement of any outer reference
resolved against an alias for a full field name when the frm
representation of a view with a subquery was generated.
If the subquery and the outer query referenced the same table in
their from lists this replacement effectively changed the meaning
of the view and led to wrong results for selects from this view.
Modified several functions to ensure setting the right value of
the alias_name_used flag for outer references resolved against
aliases.
Post fix for bug#23800.
The Item_field constructor now increases the select_n_where_fields counter.
sql_yacc.yy:
Post fix for bug#23800.
Take into account fields that might be added by subselects.
sql_lex.h:
Post fix for bug#23800.
Added the select_n_where_fields variable to the st_select_lex class.
sql_lex.cc:
Post fix for bug#23800.
Initialization of the select_n_where_fields variable.
created for sorting.
Any outer reference in a subquery was represented by an Item_field object.
If the outer select employs a temporary table all such fields should be
replaced with fields from that temporary table in order to point to the
actual data. This replacement wasn't done and that resulted in a wrong
subquery evaluation and a wrong result of the whole query.
Now any outer field is represented by two objects - Item_field placed in the
outer select and Item_outer_ref in the subquery. Item_field object is
processed as a normal field and the reference to it is saved in the
ref_pointer_array. Thus the Item_outer_ref is always references the correct
field. The original field is substituted for a reference in the
Item_field::fix_outer_field() function.
New function called fix_inner_refs() is added to fix fields referenced from
inner selects and to fix references (Item_ref objects) to these fields.
The new Item_outer_ref class is a descendant of the Item_direct_ref class.
It additionally stores a reference to the original field and designed to
behave more like a field.
UPDATE contains wrong data if the SELECT employs a temporary table.
If the UPDATE values of the INSERT .. SELECT .. ON DUPLICATE KEY UPDATE
statement contains fields from the SELECT part and the select employs a
temporary table then those fields will contain wrong values because they
aren't corrected to get data from the temporary table.
The solution is to add these fields to the selects all_fields list,
to store pointers to those fields in the selects ref_pointer_array and
to access them via Item_ref objects.
The substitution for Item_ref objects is done in the new function called
Item_field::update_value_transformer(). It is called through the
item->transform() mechanism at the end of the select_insert::prepare()
function.
"update existingtable set anycolumn=nonexisting order by nonexisting" would crash
the server.
Though we would find the reference to a field, that doesn't mean we can then use
it to set some values. It could be a reference to another field. If it is NULL,
don't try to use it to set values in the Item_field and instead return an error.
Over the previous patch, this signals an error at the location of the error, rather
than letting the subsequent deref signal it.
Ignoring error codes from type conversion allows default (wrong) values to
go unnoticed in the formation of index search conditions.
Fixed by correctly checking for conversion errors.
Objects of the classes Item_func_is_not_null_test and Item_func_trig_cond
must be transparent for the method Item::split_sum_func2 as these classes
are pure helpers. It means that the method Item::split_sum_func2 should
look at those objects as at pure wrappers.