Commit graph

2062 commits

Author SHA1 Message Date
Jan Lindström
c0a6ce61d8 Merge 10.9 into 10.10 2022-09-06 10:51:18 +03:00
Jan Lindström
ddd8901cd2 Merge 10.8 into 10.9 2022-09-06 09:45:54 +03:00
Jan Lindström
dee24f3155 Merge 10.7 into 10.8 2022-09-05 15:59:56 +03:00
Jan Lindström
5fdbb3a72e Merge 10.6 into 10.7 2022-09-05 14:55:47 +03:00
Jan Lindström
9fefd440b5 Merge 10.5 into 10.6 2022-09-05 14:05:30 +03:00
Jan Lindström
ba987a46c9 Merge 10.4 into 10.5 2022-09-05 13:28:56 +03:00
Daniele Sciascia
2917bd0d2c Reduce compilation dependencies on wsrep_mysqld.h
Making changes to wsrep_mysqld.h causes large parts of server code to
be recompiled. The reason is that wsrep_mysqld.h is included by
sql_class.h, even tough very little of wsrep_mysqld.h is needed in
sql_class.h. This commit introduces a new header file, wsrep_on.h,
which is meant to be included from sql_class.h, and contains only
macros and variable declarations used to determine whether wsrep is
enabled.
Also, header wsrep.h should only contain definitions that are also
used outside of sql/. Therefore, move WSREP_TO_ISOLATION* and
WSREP_SYNC_WAIT macros to wsrep_mysqld.h.

Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
2022-08-31 11:05:23 +03:00
Alexander Barkov
133446828c MDEV-27009 Add UCA-14.0.0 collations
- Added one neutral and 22 tailored (language specific) collations based on
  Unicode Collation Algorithm version 14.0.0.

  Collations were added for Unicode character sets
  utf8mb3, utf8mb4, ucs2, utf16, utf32.

  Every tailoring was added with four accent and case
  sensitivity flag combinations, e.g:

  * utf8mb4_uca1400_swedish_as_cs
  * utf8mb4_uca1400_swedish_as_ci
  * utf8mb4_uca1400_swedish_ai_cs
  * utf8mb4_uca1400_swedish_ai_ci

  and their _nopad_ variants:

  * utf8mb4_uca1400_swedish_nopad_as_cs
  * utf8mb4_uca1400_swedish_nopad_as_ci
  * utf8mb4_uca1400_swedish_nopad_ai_cs
  * utf8mb4_uca1400_swedish_nopad_ai_ci

- Introducing a conception of contextually typed named collations:

  CREATE DATABASE db1 CHARACTER SET utf8mb4;
  CREATE TABLE db1.t1 (a CHAR(10) COLLATE uca1400_as_ci);

  The idea is that there is no a need to specify the character set prefix
  in the new collation names. It's enough to type just the suffix
  "uca1400_as_ci". The character set is taken from the context.

  In the above example script the context character set is utf8mb4.
  So the CREATE TABLE will make a column with the collation
  utf8mb4_uca1400_as_ci.

  Short collations names can be used in any parts of the SQL syntax
  where the COLLATE clause is understood.

- New collations are displayed only one time
  (without character set combinations) by these statements:

     SELECT * FROM INFORMATION_SCHEMA.COLLATIONS;
     SHOW COLLATION;

  For example, all these collations:
  - utf8mb3_uca1400_swedish_as_ci
  - utf8mb4_uca1400_swedish_as_ci
  - ucs2_uca1400_swedish_as_ci
  - utf16_uca1400_swedish_as_ci
  - utf32_uca1400_swedish_as_ci
  have just one entry in INFORMATION_SCHEMA.COLLATIONS and SHOW COLLATION,
  with COLLATION_NAME equal to "uca1400_swedish_as_ci", which is the suffix
  without the character set name:

SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
WHERE COLLATION_NAME LIKE '%uca1400_swedish_as_ci';

+-----------------------+
| COLLATION_NAME        |
+-----------------------+
| uca1400_swedish_as_ci |
+-----------------------+

  Note, the behaviour of old collations did not change.
  Non-unicode collations (e.g. latin1_swedish_ci) and
  old UCA-4.0.0 collations (e.g. utf8mb4_unicode_ci)
  are still displayed with the character set prefix, as before.

- The structure of the table INFORMATION_SCHEMA.COLLATIONS was changed.

  The NOT NULL constraint was removed from these columns:
  - CHARACTER_SET_NAME
  - ID
  - IS_DEFAULT
  and from the corresponding columns in SHOW COLLATION.

  For example:

SELECT COLLATION_NAME, CHARACTER_SET_NAME, ID, IS_DEFAULT
FROM INFORMATION_SCHEMA.COLLATIONS
WHERE COLLATION_NAME LIKE '%uca1400_swedish_as_ci';
+-----------------------+--------------------+------+------------+
| COLLATION_NAME        | CHARACTER_SET_NAME | ID   | IS_DEFAULT |
+-----------------------+--------------------+------+------------+
| uca1400_swedish_as_ci | NULL               | NULL | NULL       |
+-----------------------+--------------------+------+------------+

  The NULL value in these columns now means that the collation
  is applicable to multiple character sets.
  The behavioir of old collations did not change.
  Make sure your client programs can handle NULL values in these columns.

- The structure of the table
  INFORMATION_SCHEMA.COLLATION_CHARACTER_SET_APPLICABILITY was changed.

  Three new NOT NULL columns were added:
  - FULL_COLLATION_NAME
  - ID
  - IS_DEFAULT

  New collations have multiple entries in COLLATION_CHARACTER_SET_APPLICABILITY.
  The column COLLATION_NAME contains the collation name without the character
  set prefix. The column FULL_COLLATION_NAME contains the collation name with
  the character set prefix.

  Old collations have full collation name in both FULL_COLLATION_NAME and
  COLLATION_NAME.

SELECT COLLATION_NAME, FULL_COLLATION_NAME, CHARACTER_SET_NAME, ID, IS_DEFAULT
FROM INFORMATION_SCHEMA.COLLATION_CHARACTER_SET_APPLICABILITY
WHERE FULL_COLLATION_NAME RLIKE '^(utf8mb4|latin1).*swedish.*ci$';
+-----------------------------+-------------------------------------+--------------------+------+------------+
| COLLATION_NAME              | FULL_COLLATION_NAME                 | CHARACTER_SET_NAME | ID   | IS_DEFAULT |
+-----------------------------+-------------------------------------+--------------------+------+------------+
| latin1_swedish_ci           | latin1_swedish_ci                   | latin1             |    8 | Yes        |
| latin1_swedish_nopad_ci     | latin1_swedish_nopad_ci             | latin1             | 1032 |            |
| utf8mb4_swedish_ci          | utf8mb4_swedish_ci                  | utf8mb4            |  232 |            |
| uca1400_swedish_ai_ci       | utf8mb4_uca1400_swedish_ai_ci       | utf8mb4            | 2368 |            |
| uca1400_swedish_as_ci       | utf8mb4_uca1400_swedish_as_ci       | utf8mb4            | 2370 |            |
| uca1400_swedish_nopad_ai_ci | utf8mb4_uca1400_swedish_nopad_ai_ci | utf8mb4            | 2372 |            |
| uca1400_swedish_nopad_as_ci | utf8mb4_uca1400_swedish_nopad_as_ci | utf8mb4            | 2374 |            |
+-----------------------------+-------------------------------------+--------------------+------+------------+

- Other INFORMATION_SCHEMA queries:

  SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLUMNS;
  SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.PARAMETERS;
  SELECT TABLE_COLLATION FROM INFORMATION_SCHEMA.TABLES;
  SELECT DEFAULT_COLLATION_NAME FROM INFORMATION_SCHEMA.SCHEMATA;
  SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.ROUTINES;
  SELECT COLLATION_CONNECTION FROM INFORMATION_SCHEMA.EVENTS;
  SELECT DATABASE_COLLATION FROM INFORMATION_SCHEMA.EVENTS;
  SELECT COLLATION_CONNECTION FROM INFORMATION_SCHEMA.ROUTINES;
  SELECT DATABASE_COLLATION FROM INFORMATION_SCHEMA.ROUTINES;
  SELECT COLLATION_CONNECTION FROM INFORMATION_SCHEMA.TRIGGERS;
  SELECT DATABASE_COLLATION FROM INFORMATION_SCHEMA.TRIGGERS;
  SELECT COLLATION_CONNECTION FROM INFORMATION_SCHEMA.VIEWS;

  display full collation names, including character sets prefix,
  for all collations, including new collations.

  Corresponding SHOW commands also display full collation names
  in collation related columns:

  SHOW CREATE TABLE t1;
  SHOW CREATE DATABASE db1;
  SHOW TABLE STATUS;
  SHOW CREATE FUNCTION f1;
  SHOW CREATE PROCEDURE p1;
  SHOW CREATE EVENT ev1;
  SHOW CREATE TRIGGER tr1;
  SHOW CREATE VIEW;

  These INFORMATION_SCHEMA queries and SHOW statements may change in
  the future, to display show collation names.
2022-08-10 15:04:24 +02:00
Oleksandr Byelkin
22d455612b Merge branch '10.8' into 10.9 2022-08-09 09:57:13 +02:00
Oleksandr Byelkin
75d631f333 Merge branch '10.7' into 10.8 2022-08-09 09:52:15 +02:00
Oleksandr Byelkin
564d374704 Merge branch '10.8' into 10.9 2022-08-08 17:17:45 +02:00
Oleksandr Byelkin
50b270525a Merge branch '10.7' into 10.8 2022-08-08 17:15:13 +02:00
Alexander Barkov
3ebbfd88a0 MDEV-29159 Patch for MDEV-28918 introduces more inconsistency than it solves, breaks usability
1. Store assignment failures on incompatible data types now raise errors if:
- STRICT_ALL_TABLES or STRICT_TRANS_TABLES sql_mode is used, and
- IGNORE is not used

Otherwise, only a warning is raised and the statement continues.

2. Changing the error/warning test as follows:

-ERROR HY000: Illegal parameter data types inet6 and int for operation 'SET'
+ERROR HY000: Cannot cast 'int' as 'inet6' in assignment of `db`.`t`.`col`

so in case of a big table it's easier to see which column has the problem.
The new error text is also applied to SP variables.
2022-08-05 22:23:40 +04:00
Marko Mäkelä
404d4820af Merge 10.8 into 10.9 2022-06-28 10:59:01 +03:00
Marko Mäkelä
9523986299 Merge 10.7 into 10.8 2022-06-28 10:06:00 +03:00
Alexander Barkov
4a7e337e5f MDEV-28963 Incompatible data type assignment through SP vars is not consistent with columns 2022-06-27 19:52:48 +04:00
Sergei Golubchik
bf2bdd1a1a Merge branch '10.8' into 10.9 2022-05-19 14:07:55 +02:00
Sergei Golubchik
443c2a715d Merge branch '10.7' into 10.8 2022-05-11 12:21:36 +02:00
Sergei Golubchik
3bc98a4ec4 Merge branch '10.5' into 10.6 2022-05-10 14:01:23 +02:00
Sergei Golubchik
ef781162ff Merge branch '10.4' into 10.5 2022-05-09 22:04:06 +02:00
Sergei Golubchik
a70a1cf3f4 Merge branch '10.3' into 10.4 2022-05-08 23:03:08 +02:00
Oleksandr Byelkin
9614fde1aa Merge branch '10.2' into 10.3 2022-05-03 10:59:54 +02:00
Oleg Smirnov
e7fcd496d4 MDEV-27021 Implement SHOW ANALYZE command 2022-04-29 10:48:20 +03:00
Sergei Golubchik
3988dfff62 MDEV-6899 extra semicolon in show create event syntax
to detect the end of SP definition correctly we need to know where
the parser stopped parsing the SP. lip->get_cpp_ptr() shows the
current parsing position, lip->get_cpp_tok_start() shows the start of
the last parsed token. The actual value depends on whether
the parser has performed a look-ahead. For example, in

  CREATE PROCEDURE ... BEGIN ... END ;

the parser reads 'END' and knows that this ends the procedure definition,
it does not need to read the next token for this. But in

  CREATE PROCEDURE ... SELECT 1 ;

the parser cannot know that the procedure ends at '1'. It has to read
the semicolon first (it could be '1 + 2' for example).

In the first case, the "current parsing position" is after END, before
the semicolon, in the second case it's *after* the semicolon. Note that
SP definition in both cases ends before the semicolon.

To be able to detect the end of SP deterministically, we need the parser
to do the look-ahead always or never.

The bug fix introduces a new parser token FORCE_LOOKAHEAD. Lexer never
returns it, so this token can never match. But the parser cannot know
it so it will have to perform a look-ahead to determine that the next
token is not FORCE_LOOKAHEAD. This way we deterministically end
SP parsing with a look-ahead.
2022-04-25 21:23:00 +02:00
Marko Mäkelä
5c69e93630 Merge 10.7 into 10.8 2022-03-30 09:34:07 +03:00
Marko Mäkelä
b242c3141f Merge 10.5 into 10.6 2022-03-29 16:16:21 +03:00
Marko Mäkelä
d62b0368ca Merge 10.4 into 10.5 2022-03-29 12:59:18 +03:00
Marko Mäkelä
ae6e214fd8 Merge 10.3 into 10.4 2022-03-29 11:13:18 +03:00
Oleksandr Byelkin
fbc1cc974e MDEV-26009 Server crash when calling twice procedure using FOR-loop
The problem was that instructions sp_instr_cursor_copy_struct and
sp_instr_copen uses the same lex, adding and removing "tail" of
prelocked tables and forgetting that tail of all tables is kept in
LEX::query_tables_last. If the LEX used only by one instruction
or the query do not have prelocked tables it is not important.
But to work correctly in all cases LEX::query_tables_last should
be reset to make new tables added in the correct list (after last
table in the LEX instead after last table of the prelocking "tail"
which was cut).
2022-03-21 07:55:57 +01:00
ManoharKB
4572dc23f7 MDEV-10654 add support IN, OUT, INOUT parameter qualifiers for stored functions
Problem: Currently stored function does not support IN/OUT/INOUT parameter qualifiers.
This is needed for Oracle compatibility (sql_mode = ORACLE).

Solution: Implemented parameter qualifier support to CREATE FUNCTION (reference: CREATE PROCEDURE)
Implemented return by reference for OUT/INOUT parameters in execute_function() (reference: execute_procedure())

Files changed:
sql/sql_yacc.yy: Added IN, OUT, INOUT parameter qualifiers for CREATE FUNCTION.
sql/sp_head.cc: Added input and output parameter binding for IN/OUT/INOUT parameters in execute_function() so that OUT/INOUT can return by reference.
sql/share/errmsg-utf8.txt: Added error message to restrict OUT/INOUT parameters while function being called from SQL query.
mysql-test/suite/compat/oracle/t/sp-inout.test: Added test cases
mysql-test/suite/compat/oracle/r/sp-inout.result: Added test results

Reviewed-by: iqbal@hasprime.com
2022-01-24 19:46:27 +04:00
Sergei Petrunia
32692140e1 MDEV-27306: SET STATEMENT optimizer_trace=1 Doesn't save the trace
In mysql_execute_command(), move optimizer trace initialization to be
after run_set_statement_if_requested() call.

Unfortunately, mysql_execute_command() code uses "goto error" a lot, and
this means optimizer trace code cannot use RAII objects. Work this around
by:
- Make Opt_trace_start a non-RAII object, add init() method.
- Move the code that writes the top-level object and array into
  Opt_trace_start::init().
2021-12-19 17:19:02 +03:00
Oleksandr Byelkin
109fc67d4d Merge branch '10.5' into 10.6 2021-11-05 20:35:45 +01:00
Oleksandr Byelkin
8635be6a29 Merge branch '10.4' into 10.5 2021-11-05 20:33:57 +01:00
Oleksandr Byelkin
a19ab67318 Merge branch '10.3' into 10.4 2021-11-05 19:59:58 +01:00
Oleksandr Byelkin
a2f147af35 Merge branch '10.2' into 10.3 2021-11-05 19:58:32 +01:00
Andrei Elkin
561b6c7e51 MDEV-26833 Missed statement rollback in case transaction drops or create temporary table
When transaction creates or drops temporary tables and afterward its statement
faces an error even the transactional table statement's cached ROW
format events get involved into binlog and are visible after the transaction's commit.

Fixed with proper analysis of whether the errored-out statement needs
to be rolled back in binlog.
For instance a fact of already cached CREATE or DROP for temporary
tables by previous statements alone
does not cause to retain the being errored-out statement events in the
cache.
Conversely, if the statement creates or drops a temporary table
itself it can't be rolled back - this rule remains.
2021-11-05 19:33:28 +02:00
Andrei Elkin
42ae765960 MDEV-26833 Missed statement rollback in case transaction drops or create temporary table
When transaction creates or drops temporary tables and afterward its statement
faces an error even the transactional table statement's cached ROW
format events get involved into binlog and are visible after the transaction's commit.

Fixed with proper analysis of whether the errored-out statement needs
to be rolled back in binlog.
For instance a fact of already cached CREATE or DROP for temporary
tables by previous statements alone
does not cause to retain the being errored-out statement events in the
cache.
Conversely, if the statement creates or drops a temporary table
itself it can't be rolled back - this rule remains.
2021-10-28 19:54:03 +03:00
Marko Mäkelä
860e754349 Merge 10.5 into 10.6 2021-05-26 11:22:40 +03:00
Igor Babaev
675716e1cb MDEV-23886 Reusing CTE inside a function fails with table doesn't exist
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.

This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.

# Conflicts:
#	sql/sql_cte.cc
#	sql/sql_cte.h
#	sql/sql_lex.cc
#	sql/sql_lex.h
#	sql/sql_view.cc
#	sql/sql_yacc.yy
#	sql/sql_yacc_ora.yy
2021-05-25 21:48:54 -07:00
Igor Babaev
04de651725 MDEV-23886 Reusing CTE inside a function fails with table doesn't exist
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.

This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
2021-05-25 00:43:03 -07:00
Marko Mäkelä
1864a8ea93 Merge 10.2 into 10.3 2021-05-24 09:38:49 +03:00
Igor Babaev
43c9fcefc0 MDEV-23886 Reusing CTE inside a function fails with table doesn't exist
In the code existed just before this patch binding of a table reference to
the specification of the corresponding CTE happens in the function
open_and_process_table(). If the table reference is not the first in the
query the specification is cloned in the same way as the specification of
a view is cloned for any reference of the view. This works fine for
standalone queries, but does not work for stored procedures / functions
for the following reason.
When the first call of a stored procedure/ function SP is processed the
body of SP is parsed. When a query of SP is parsed the info on each
encountered table reference is put into a TABLE_LIST object linked into
a global chain associated with the query. When parsing of the query is
finished the basic info on the table references from this chain except
table references to derived tables and information schema tables is put
in one hash table associated with SP. When parsing of the body of SP is
finished this hash table is used to construct TABLE_LIST objects for all
table references mentioned in SP and link them into the list of such
objects passed to a pre-locking process that calls open_and_process_table()
for each table from the list.
When a TABLE_LIST for a view is encountered the view is opened and its
specification is parsed. For any table reference occurred in
the specification a new TABLE_LIST object is created to be included into
the list for pre-locking. After all objects in the pre-locking have been
looked through the tables mentioned in the list are locked. Note that the
objects referenced CTEs are just skipped here as it is impossible to
resolve these references without any info on the context where they occur.
Now the statements from the body of SP are executed one by one that.
At the very beginning of the execution of a query the tables used in the
query are opened and open_and_process_table() now is called for each table
reference mentioned in the list of TABLE_LIST objects associated with the
query that was built when the query was parsed.
For each table reference first the reference is checked against CTEs
definitions in whose scope it occurred. If such definition is found the
reference is considered resolved and if this is not the first reference
to the found CTE the the specification of the CTE is re-parsed and the
result of the parsing is added to the parsing tree of the query as a
sub-tree. If this sub-tree contains table references to other tables they
are added to the list of TABLE_LIST objects associated with the query in
order the referenced tables to be opened. When the procedure that opens
the tables comes to the TABLE_LIST object created for a non-first
reference to a CTE it discovers that the referenced table instance is not
locked and reports an error.
Thus processing non-first table references to a CTE similar to how
references to view are processed does not work for queries used in stored
procedures / functions. And the main problem is that the current
pre-locking mechanism employed for stored procedures / functions does not
allow to save the context in which a CTE reference occur. It's not trivial
to save the info about the context where a CTE reference occurs while the
resolution of the table reference cannot be done without this context and
consequentially the specification for the table reference cannot be
determined.

This patch solves the above problem by moving resolution of all CTE
references at the parsing stage. More exactly references to CTEs occurred in
a query are resolved right after parsing of the query has finished. After
resolution any CTE reference it is marked as a reference to to derived
table. So it is excluded from the hash table created for pre-locking used
base tables and view when the first call of a stored procedure / function
is processed.
This solution required recursive calls of the parser. The function
THD::sql_parser() has been added specifically for recursive invocations of
the parser.
2021-05-21 16:00:35 -07:00
Monty
a206658b98 Change CHARSET_INFO character set and collaction names to LEX_CSTRING
This change removed 68 explict strlen() calls from the code.

The following renames was done to ensure we don't use the old names
when merging code from earlier releases, as using the new variables
for print function could result in crashes:
- charset->csname renamed to charset->cs_name
- charset->name renamed to charset->coll_name

Almost everything where mechanical changes except:
- Changed to use the new Protocol::store(LEX_CSTRING..) when possible
- Changed to use field->store(LEX_CSTRING*, CHARSET_INFO*) when possible
- Changed to use String->append(LEX_CSTRING&) when possible

Other things:
- There where compiler issues with ensuring that all character set names
  points to the same string: gcc doesn't allow one to use integer constants
  when defining global structures (constant char * pointers works fine).
  To get around this, I declared defines for each character set name
  length.
2021-05-19 22:54:07 +02:00
Monty
b6ff139aa3 Reduce usage of strlen()
Changes:
- To detect automatic strlen() I removed the methods in String that
  uses 'const char *' without a length:
  - String::append(const char*)
  - Binary_string(const char *str)
  - String(const char *str, CHARSET_INFO *cs)
  - append_for_single_quote(const char *)
  All usage of append(const char*) is changed to either use
  String::append(char), String::append(const char*, size_t length) or
  String::append(LEX_CSTRING)
- Added STRING_WITH_LEN() around constant string arguments to
  String::append()
- Added overflow argument to escape_string_for_mysql() and
  escape_quotes_for_mysql() instead of returning (size_t) -1 on overflow.
  This was needed as most usage of the above functions never tested the
  result for -1 and would have given wrong results or crashes in case
  of overflows.
- Added Item_func_or_sum::func_name_cstring(), which returns LEX_CSTRING.
  Changed all Item_func::func_name()'s to func_name_cstring()'s.
  The old Item_func_or_sum::func_name() is now an inline function that
  returns func_name_cstring().str.
- Changed Item::mode_name() and Item::func_name_ext() to return
  LEX_CSTRING.
- Changed for some functions the name argument from const char * to
  to const LEX_CSTRING &:
  - Item::Item_func_fix_attributes()
  - Item::check_type_...()
  - Type_std_attributes::agg_item_collations()
  - Type_std_attributes::agg_item_set_converter()
  - Type_std_attributes::agg_arg_charsets...()
  - Type_handler_hybrid_field_type::aggregate_for_result()
  - Type_handler_geometry::check_type_geom_or_binary()
  - Type_handler::Item_func_or_sum_illegal_param()
  - Predicant_to_list_comparator::add_value_skip_null()
  - Predicant_to_list_comparator::add_value()
  - cmp_item_row::prepare_comparators()
  - cmp_item_row::aggregate_row_elements_for_comparison()
  - Cursor_ref::print_func()
- Removes String_space() as it was only used in one cases and that
  could be simplified to not use String_space(), thanks to the fixed
  my_vsnprintf().
- Added some const LEX_CSTRING's for common strings:
  - NULL_clex_str, DATA_clex_str, INDEX_clex_str.
- Changed primary_key_name to a LEX_CSTRING
- Renamed String::set_quick() to String::set_buffer_if_not_allocated() to
  clarify what the function really does.
- Rename of protocol function:
  bool store(const char *from, CHARSET_INFO *cs) to
  bool store_string_or_null(const char *from, CHARSET_INFO *cs).
  This was done to both clarify the difference between this 'store' function
  and also to make it easier to find unoptimal usage of store() calls.
- Added Protocol::store(const LEX_CSTRING*, CHARSET_INFO*)
- Changed some 'const char*' arrays to instead be of type LEX_CSTRING.
- class Item_func_units now used LEX_CSTRING for name.

Other things:
- Fixed a bug in mysql.cc:construct_prompt() where a wrong escape character
  in the prompt would cause some part of the prompt to be duplicated.
- Fixed a lot of instances where the length of the argument to
  append is known or easily obtain but was not used.
- Removed some not needed 'virtual' definition for functions that was
  inherited from the parent. I added override to these.
- Fixed Ordered_key::print() to preallocate needed buffer. Old code could
  case memory overruns.
- Simplified some loops when adding char * to a String with delimiters.
2021-05-19 22:27:48 +02:00
Monty
6079b46d8d Split item->flags into base_flags and with_flags
This was done to simplify copying of with_* flags

Other things:
- Changed Flags to C++ enums, which enables gdb to print
  out bit values for the flags. This also enables compiler
  errors if one tries to manipulate a non existing bit in
  a variable.
- Added set_maybe_null() as a shortcut as setting the
  MAYBE_NULL flags was used in a LOT of places.
- Renamed PARAM flag to SP_VAR to ensure it's not confused with persistent
  statement parameters.
2021-05-19 22:27:28 +02:00
Monty
7ca4e381f7 Removed Item::is_fixed() and Item::has_subquery()
One should instead use Item::fixed() and Item::with_subquery()

Removed Item::is_fixed() and has_subquery() and did the following replace:
replace is_fixed() fixed() -- *.*
replace 'has_subquery()' 'with_subquery()' -- *.*
2021-05-19 22:27:28 +02:00
Michael Widenius
3105c9e7a5 Change bitfields in Item to an uint16
The reason for the change is that neither clang or gcc can do efficient
code when several bit fields are change at the same time or when copying
one or more bits between identical bit fields.
Updated bits explicitely with & and | is MUCH more efficient than what
current compilers can do.
2021-05-19 22:27:28 +02:00
Alexey Botchkov
1b81e23737 MDEV-17339 JSON_TABLE.
add_table_to_list - remove the table_function argument.
2021-04-21 10:21:46 +04:00
Jan Lindström
27d66d644c MENT-411 : Implement wsrep_replicate_aria
Introduced two new wsrep_mode options
* REPLICATE_MYISAM
* REPLICATE_ARIA

Depracated wsrep_replicate_myisam parameter and we use
wsrep_mode = REPLICATE_MYISAM instead.

This required small refactoring of wsrep_check_mode_after_open_table
so that both MyISAM and Aria are handled on required DML cases.
Similarly, added Aria to wsrep_should_replicate_ddl to handle DDL
for Aria tables using TOI. Added test cases and improved MyISAM testing.
Changed use of wsrep_replicate_myisam to wsrep_mode = REPLICATE_MYISAM
2021-02-25 07:47:51 +02:00
Marko Mäkelä
6a1e655cb0 Merge 10.4 into 10.5 2020-12-02 18:29:49 +02:00