Analysis:
When the method JOIN::choose_subquery_plan() decided to apply
the IN-TO-EXISTS strategy, it set the unit and select_lex
uncacheable flag to UNCACHEABLE_DEPENDENT_INJECTED unconditionally.
As result, even if IN-TO-EXISTS injected non-correlated predicates,
the subquery was still treated as correlated.
Solution:
Set the subquery as correlated only if the injected predicate(s) depend
on the outer query.
Analysis:
The fix for lp:944706 introduces early subquery optimization.
While a subquery is being optimized some of its predicates may be
removed. In the test case, the EXISTS subquery is constant, and is
evaluated to TRUE. As a result the whole OR is TRUE, and thus the
correlated condition "b = alias1.b" is optimized away. The subquery
becomes non-correlated.
The subquery cache is designed to work only for correlated subqueries.
If constant subquery optimization is disallowed, then the constant
subquery is not evaluated, the subquery remains correlated, and its
execution is cached. As a result execution is fast.
However, when the constant subquery was optimized away, it was neither
cached by the subquery cache, nor it was cached by the internal subquery
caching. The latter was due to the fact that the subquery still appeared
as correlated to the subselect_XYZ_engine::exec methods, and they
re-executed the subquery on each call to Item_subselect::exec.
Solution:
The solution is to update the correlated status of the subquery after it has
been optimized. This status consists of:
- st_select_lex::is_correlated
- Item_subselect::is_correlated
- SELECT_LEX::uncacheable
- SELECT_LEX_UNIT::uncacheable
The status is updated by st_select_lex::update_correlated_cache(), and its
caller st_select_lex::optimize_unflattened_subqueries. The solution relies
on the fact that the optimizer already called
st_select_lex::update_used_tables() for each subquery. This allows to
efficiently update the correlated status of each subquery without walking
the whole subquery tree.
Notice that his patch is an improvement over MySQL 5.6 and older, where
subqueries are not pre-optimized, and the above analysis is not possible.
- make make_cond_after_sjm() correctly handle OR clauses where one branch refers to the semi-join table
while the other branch refers to the non-semijoin table.
The patch enables back constant subquery execution during
query optimization after it was disabled during the development
of MWL#89 (cost-based choice of IN-TO-EXISTS vs MATERIALIZATION).
The main idea is that constant subqueries are allowed to be executed
during optimization if their execution is not expensive.
The approach is as follows:
- Constant subqueries are recursively optimized in the beginning of
JOIN::optimize of the outer query. This is done by the new method
JOIN::optimize_constant_subqueries(). This is done so that the cost
of executing these queries can be estimated.
- Optimization of the outer query proceeds normally. During this phase
the optimizer may request execution of non-expensive constant subqueries.
Each place where the optimizer may potentially execute an expensive
expression is guarded with the predicate Item::is_expensive().
- The implementation of Item_subselect::is_expensive has been extended
to use the number of examined rows (estimated by the optimizer) as a
way to determine whether the subquery is expensive or not.
- The new system variable "expensive_subquery_limit" controls how many
examined rows are considered to be not expensive. The default is 100.
In addition, multiple changes were needed to make this solution work
in the light of the changes made by MWL#89. These changes were needed
to fix various crashes and wrong results, and legacy bugs discovered
during development.
- When doing join optimization, pre-sort the tables so that they mimic the execution
order we've had with 'semijoin=off'.
- That way, we will not get regressions when there are two query plans (the old and the
new) that have indentical costs but different execution times (because of factors that
the optimizer was not able to take into account).
- The bug would show up
- when using PS (so that we get re-execution)
- the left_expr of the subquery is a reference to viewname.column_name, so that it crashes
when one tries to use it without having called fix_fields for it.
- when using SJ-Materialization, which makes use of sj_subq_pred->left_expr expression
- The fix is to have setup_conds() fix sj_subq_pred->left_expr for semi-join nests it finds.
The function create_hj_key_for_table() that builds the descriptor of
the hash join key to access a table of a materialized subquery must
ignore any equi-join predicate depending on the tables not belonging
to the subquery.
This bug appeared after the patch for bug 939009 that in the
function merge_key_fields forgot to reset a proper value for
the val field in the result of the merge operation of the key
field created for a regular key access and the key field
created to look for a NULL key.
Adjusted the results of the test case for bug 939009 that
actually were incorrect.
The result of materialization of the right part of an IN subquery predicate
is placed into a temporary table. Each row of the materialized table is
distinct. A unique key over all fields of the temporary table is defined and
created. It allows to perform key look-ups into the table.
The table created for a materialized subquery can be accessed by key as
any other table. The function best_access-path search for the best access
to join a table to a given partial join. With some where conditions this
function considers a possibility of a ref_or_null access. If such access
employs the unique key on the temporary table then when estimating
the cost this access the function tries to use the array rec_per_key. Yet,
such array is not built for this unique key. This causes a crash of the server.
Rows returned by the subquery that contain nulls don't have to be placed
into temporary table, as they cannot be match any row produced by the
left part of the subquery predicate. So all fields of the temporary table
can be defined as non-nullable. In this case any ref_or_null access
to the temporary table does not make any sense and it does not make sense
to estimate such an access.
The fix makes sure that the temporary table for a materialized IN subquery
is defined with columns that are all non-nullable. The also ensures that
any row with nulls returned by the subquery is not placed into the
temporary table.
- In return_zero_rows(), don't call mark_as_null_row() for semi-join
materialized tables, because 1) they may have been already freed, and
2)there is no real need to call mark_as_null_row() for them.
Fixed Item* Item_equal::get_first(JOIN_TAB *context, Item *field_item) to work correctly in the case where:
- context!= NO_PARTICULAR_TAB, it points to a table within SJ-Materialization nest
- field_item points to an item_equal that has a constant Item_field but does not have any fields
from tables that are within semi-join nests.
The patch differs from the original MySQL patch as follows:
- All test case differences have been reviewed one by one, and
care has been taken to restore the original plan so that each
test case executes the code path it was designed for.
- A bug was found and fixed in MariaDB 5.3 in
Item_allany_subselect::cleanup().
- ORDER BY is not removed because we are unsure of all effects,
and it would prevent enabling ORDER BY ... LIMIT subqueries.
- ref_pointer_array.m_size is not adjusted because we don't do
array bounds checking, and because it looks risky.
Original comment by Jorgen Loland:
-------------------------------------------------------------
WL#5953 - Optimize away useless subquery clauses
For IN/ALL/ANY/SOME/EXISTS subqueries, the following clauses are
meaningless:
* ORDER BY (since we don't support LIMIT in these subqueries)
* DISTINCT
* GROUP BY if there is no HAVING clause and no aggregate
functions
This WL detects and optimizes away these useless parts of the
query during JOIN::prepare()
- Let JTBM optimization code handle the case where the subquery is degenerate and doesn't have a
join query plan. Regular materialization would fall back to IN->EXISTS for such cases. Semi-Join
materialization does not have such option, instead we introduce and use "constant JTBM join tabs".
- Do a "more thorough" cleanup of SJ-Materialization join tab in JOIN_TAB::cleanup. The bug
was due to the fact that JOIN_TAB::cleanup() may be called multiple times for the same tab
if the join has grouping.
* rename all debugging related command-line options
and variables to start from "debug-", and made them all
OFF by default.
* replace "MySQL" with "MariaDB" in error messages
* "Cast ... converted ... integer to it's ... complement"
is now a note, not a warning
* @@query_cache_strip_comments now has a session scope,
not global.
- Part 1 of the fix: for semi-join merged subqueries, calling child_join->optimize() until we're done with all
PS-lifetime optimizations in the parent.
in EXPLAIN as select_type==MATERIALIZED.
Before, we had select_type==SUBQUERY and it was difficult to tell materialized
subqueries from uncorrelated scalar-context subqueries.
- Make EXPLAIN display "Start temporary" at the start of the fanout (it used to display
at the first table whose rowid gets into temp. table which is not that useful for
the user)
- Updated test results (all checked)
If the optimizer switch 'semijoin_with_cache' is set to 'off' then
join cache cannot be used to join inner tables of a semijoin.
Also fixed a bug in the function check_join_cache_usage() that led
to wrong output of the EXPLAIN commands for some test cases.
- in make_join_select(), use the correct condition to check whether the current table is a SJM nest (the previous
condition used to be correct before, but then sj-materialization temp table creation was moved to happen before
make_join_select was called)
- The problem was that JOIN::save/restore_query_plan() did not save/restore parts of
the query plan that are located inside SJ_MATERIALIZATION_INFO structures. This could
cause parts of one plan to be used with another, which led get_best_combination() to
constructing non-sensical join plans (and crash).
Fixed by saving/restoring SJM parts of the query plans.
- check_and_do_in_subquery_rewrites() will not set SUBS_MATERIALIZATION flag when it
records that the subquery predicate is to be converted into semi-join.
If convert_join_subqueries_to_semijoins() later decides not to convert to semi-join,
let it set SUBS_MATERIALIZATION flag, if appropriate.
- are_tables_local() failed to recognize the fact that OUTER_REF_TABLE_BIT is ok
for SJ-Materialization. This caused zero-length ref access to be constructed, which
led to an assert.
- Make subquery_types_allow_materialization() detect a case where
create_tmp_table() would create a blob column which would make it
impossible to use materialization
Non-semi-join materialization worked because it detected that this case
and felt back to use IN->EXISTS. Semi-join Materialization cannot easily
fallback, so we have to detect this case early.