if join is used
For procedures with selects that use complicated joins with ON expression
re-execution could erroneously ignore this ON expression, giving
incorrect result.
The problem was that optimized ON expression wasn't saved for
re-execution. The solution is to properly save it.
Select_type in the EXPLAIN output for the query SELECT * FROM t1 was
'SIMPLE', while for the query SELECT * FROM v1, where the view v1
was defined as SELECT * FROM t1, the EXPLAIN output contained 'PRIMARY'
for the select_type column.
The problem was due to a prior fix for BUG 9676, which limited
the rows stored in a temporary table to the LIMIT clause. This
optimization is not applicable to non-group queries with aggregate
functions. The fix disables the optimization in this case.
account by the optimizer.
Now all row equalities are converted into conjunctions of
equalities between row elements. They are taken into account
by the optimizer together with the original regular equality
predicates.
const tables. This resulted in choosing extremely inefficient
execution plans in same cases when distribution of data in
joined were skewed (see the customer test case for the bug).
GROUP BY/DISTINCT pruning optimization must be done before ORDER BY
optimization because ORDER BY may be removed when GROUP BY/DISTINCT
sorts as a side effect, e.g. in
SELECT DISTINCT <non-key-col>,<pk> FROM t1
ORDER BY <non-key-col> DISTINCT
must be removed before ORDER BY as if done the other way around
it will remove both.
used.
Sorting by RAND() uses a temporary table in order to get a correct results.
User defined variable was set during filling the temporary table and later
on it is substituted for its value from the temporary table. Due to this
it contains the last value stored in the temporary table.
Now if the result_field is set for the Item_func_set_user_var object it
updates variable from the result_field value when being sent to a client.
The Item_func_set_user_var::check() now accepts a use_result_field
parameter. Depending on its value the result_field or the args[0] is used
to get current value.
A date can be represented as an int (like 20060101) and as a string (like
"2006.01.01"). When a DATE/TIME field is compared in one SELECT against both
representations the constant propagation mechanism leads to comparison
of DATE as a string and DATE as an int. In this example it compares 2006 and
20060101 integers. Obviously it fails comparison although they represents the
same date.
Now the Item_bool_func2::fix_length_and_dec() function sets the comparison
context for items being compared. I.e. if items compared as strings the
comparison context is STRING.
The constant propagation mechanism now doesn't mix items used in different
comparison contexts. The context check is done in the
Item_field::equal_fields_propagator() and in the change_cond_ref_to_const()
functions.
Also the better fix for bug 21159 is introduced.
SELECT right instead of INSERT right was required for an insert into to a view.
This wrong behaviour appeared after the fix for bug #20989. Its intention was
to ask only SELECT right for all tables except the very first for a complex
INSERT query. But that patch has done it in a wrong way and lead to asking
a wrong access right for an insert into a view.
The setup_tables_and_check_access() function now accepts two want_access
parameters. One will be used for the first table and the second for other
tables.
Disable const propagation for Item_hex_string.
This must be done because Item_hex_string->val_int() is not
the same as (Item_hex_string->val_str() in BINARY column)->val_int().
We cannot simply disable the replacement in a particular context (
e.g. <bin_col> = <int_col> AND <bin_col> = <hex_string>) since
Items don't know the context they are in and there are functions like
IF (<hex_string>, 'yes', 'no').
Note that this will disable some valid cases as well
(e.g. : <bin_col> = <hex_string> AND <bin_col2> = <bin_col>) but
there's no way to distinguish the valid cases without having the
Item's parent say something like : Item->set_context(Item::STRING_RESULT)
and have all the Items that contain other Items do that consistently.
optimizer does not honor IGNORE INDEX
- Allow an index to be used for sorting the table
instead of filesort only if it is not disabled by
IGNORE INDEX.
table in a join
The optimizer removes redundant columns in ORDER BY. It is considering
redundant every reference to const table column, e.g b in :
create table t1 (a int, b int, primary key(a));
select 1 from t1 order by b where a = 1
But it must not remove references to const table columns if the
const table is an outer table because there still can be 2 values :
the const value and NULL. e.g.:
create table t1 (a int, b int, primary key(a));
select t2.b c from t1 left join t1 t2 on (t1.a = t2.a and t2.a = 5)
order by c;
Treat queries with no FROM and aggregate functions as normal queries,
so the aggregate function get correctly calculated as if there is 1 row.
This means that they will be considered to have one row, so COUNT(*) will return
1 instead of 0. Other aggregates will behave in compatible manner.
Renamed variable, to avoid name clash with macro "rem_size"
on AIX 5.3 and "/usr/include/sys/xmem.h" (bug#17648)
asn.cpp, asn.hpp:
Avoid name clash with NAME_MAX
When processing aggregate functions all tables values are reset
to NULLs at the end of each group.
When doing that if there are no rows found for a group
the const tables must not be reset as they are not recalculated
by do_select()/sub_select() for each group.
Too many cursors (more than 1024) could lead to memory corruption.
This affects both, stored routines and C API cursors, and the
threshold is per-server, not per-connection. Similarly, the
corruption could happen when the server was under heavy load
(executing more than 1024 simultaneous complex queries), and this is
the reason why this bug is fixed in 4.1, which doesn't support
cursors.
The corruption was caused by a bug in the temporary tables code, when
an attempt to create a table could lead to a write beyond allocated
space. Note, that only internal tables were affected (the tables
created internally by the server to resolve the query), not tables
created with CREATE TEMPORARY TABLE. Another pre-condition for the
bug is TRUE value of --temp-pool startup option, which, however, is a
default.
The cause of a bug was that random memory was overwritten in
bitmap_set_next() due to out-of-bound memory access.
When optimizing conditions like 'a = <some_val> OR a IS NULL' so that they're
united into a single condition on the key and checked together the server must
check which value is the NULL value in a correct way : not only using ->is_null
but also check if the expression doesn't depend on any tables referenced in the
current statement.
This additional check must be performed because that optimization takes place
before the actual execution of the statement, so if the field was initialized
to NULL from a previous statement the optimization would be applied incorrectly.
The problem was in that opt_sum_query() replaced MIN/MAX functions
with the corresponding constant found in a key, but due to imprecise
representation of float numbers, when evaluating the where clause,
this comparison failed.
When MIN/MAX optimization detects that all tables can be removed,
also remove all conjuncts in a where clause that refer to these
tables. As a result of this fix, these conditions are not evaluated
twice, and in the case of float number comparisons we do not discard
result rows due to imprecise float representation.
As a side-effect this fix also corrects an unnoticed problem in
bug 12882.
When there is no index defined filesort is used to sort the result of a
query. If there is a function in the select list and the result set should be
ordered by it's value then this function will be evaluated twice. First time to
get the value of the sort key and second time to send its value to a user.
This happens because filesort when sorts a table remembers only values of its
fields but not values of functions.
All functions are affected. But taking into account that SP and UDF functions
can be both expensive and non-deterministic a temporary table should be used
to store their results and then sort it to avoid twice SP evaluation and to
get a correct result.
If an expression referenced in an ORDER clause contains a SP or UDF
function, force the use of a temporary table.
A new Item_processor function called func_type_checker_processor is added
to check whether the expression contains a function of a particular type.
when calculating GROUP_CONCAT all blob fields are transformed
to varchar when making the temp table.
However a varchar has at max 2 bytes for length.
This fix makes the conversion only for blobs whose max length
is below that limit.
Otherwise blob field is created by make_string_field() call.
When making a place to store field values at the start of each group
the real item (not the reference) must be used when deciding which column
to copy.
An aggregate function reference was resolved incorrectly and
caused a crash in count_field_types.
Must use real_item() to get to the real Item instance through
the reference
The bug was due to a loss happened during a refactoring made
on May 30 2005 that modified the function JOIN::reinit.
As a result of it for any subquery the value of offset_limit_cnt
was not restored for the following executions. Yet the first
execution of the subquery made it equal to 0.
The fix restores this value in the function JOIN::reinit.
DESCRIBE returned the type BIGINT for a column of a view if the column
was specified by an expression over values of the type INT.
E.g. for the view defined as follows:
CREATE VIEW v1 SELECT COALESCE(f1,f2) FROM t1
DESCRIBE returned type BIGINT for the only column of the view if f1,f2 are
columns of the INT type.
At the same time DESCRIBE returned type INT for the only column of the table
defined by the statement:
CREATE TABLE t2 SELECT COALESCE(f1,f2) FROM t1.
This inconsistency was removed by the patch.
Now the code chooses between INT/BIGINT depending on the
precision of the aggregated column type.
Thus both DESCRIBE commands above returns type INT for v1 and t2.
* don't use join cache when the incoming data set is already ordered
for ORDER BY
This choice must be made because join cache will effectively
reverse the join order and the results will be sorted by the index
of the table that uses join cache.
may return a wrong result.
An Item_sum_hybrid object has the was_values flag which indicates whether any
values were added to the sum function. By default it is set to true and reset
to false on any no_rows_in_result() call. This method is called only in
return_zero_rows() function. An ALL/ANY subquery can be optimized by MIN/MAX
optimization. The was_values flag is used to indicate whether the subquery
has returned at least one row. This bug occurs because return_zero_rows() is
called only when we know that the select will return zero rows before
starting any scans but often such information is not known.
In the reported case the return_zero_rows() function is not called and
the was_values flag is not reset to false and yet the subquery return no rows
Item_func_not_all and Item_func_nop_all functions return a wrong
comparison result.
The end_send_group() function now calls no_rows_in_result() for each item
in the fields_list if there is no rows were found for the (sub)query.
To make MySQL compatible with some ODBC applications, you can find
the AUTO_INCREMENT value for the last inserted row with the following query:
SELECT * FROM tbl_name WHERE auto_col IS NULL.
This is done with a special code that replaces 'auto_col IS NULL' with
'auto_col = LAST_INSERT_ID'.
However this also resets the LAST_INSERT_ID to 0 as it uses it for a flag
so as to ensure that only the first SELECT ... WHERE auto_col IS NULL
after an INSERT has this special behaviour.
In order to avoid resetting the LAST_INSERT_ID a special flag is introduced
in the THD class. This flag is used to restrict the second and subsequent
SELECTs instead of LAST_INSERT_ID.
The problem was that we restored SQL_CACHE, SQL_NO_CACHE flags in SELECT
statement from internal structures based on value set later at runtime, not
the original value set by the user.
The solution is to remember that original value.
'SELECT DISTINCT a,b FROM t1' should not use temp table if there is unique
index (or primary key) on a.
There are a number of other similar cases that can be calculated without the
use of a temp table : multi-part unique indexes, primary keys or using GROUP BY
instead of DISTINCT.
When a GROUP BY/DISTINCT clause contains all key parts of a unique
index, then it is guaranteed that the fields of the clause will be
unique, therefore we can optimize away GROUP BY/DISTINCT altogether.
This optimization has two effects:
* there is no need to create a temporary table to compute the
GROUP/DISTINCT operation (or the temporary table will be smaller if only GROUP
is removed and DISTINCT stays or if DISTINCT is removed and GROUP BY stays)
* this causes the statement in effect to become updatable in Connector/Java
because the result set columns will be direct reference to the primary key of
the table (instead to the temporary table that it currently references).
Implemented a check that will optimize away GROUP BY/DISTINCT for queries like
the above.
Currently it will work only for single non-constant table in the FROM clause.
Bug#17294 - INSERT DELAYED puting an \n before data
Bug#16611 - INSERT DELAYED corrupts data
Bug#13707 - Server crash with INSERT DELAYED on MyISAM table
Combined as Bug#16218.
INSERT DELAYED crashed in 5.0 on a table with a varchar that
could be NULL and was created pre-5.0 (Bugs 16218 and 13707).
INSERT DELAYED corrupted data in 5.0 on a table with varchar
fields that was created pre-5.0 (Bugs 17294 and 16611).
In case of INSERT DELAYED the open table is copied from the
delayed insert thread to be able to create a record for the
queue. When copying the fields, a method was used that did
convert old varchar to new varchar fields and did not set up
some pointers into the record buffer of the table.
The field conversion was guilty for the misinterpretation of
the record contents by the delayed insert thread. The wrong
pointer setup was guilty for the crashes.
For Bug 13707 (Server crash with INSERT DELAYED on MyISAM table)
I fixed the above mentioned method to set up one of the pointers.
For Bug 16218 I set up the other pointers too.
But when looking at the corruptions I got aware that converting
the field type was totally wrong for INSERT DELAYED. The copied
table is used to create a record that is to be sent to the
delayed insert thread. Of course it can interpret the record
correctly only if all field types are the same in both table
objects.
So I revoked the fix for Bug 13707 and changed the new_field()
method so that it can suppress conversions.
No test case as this is a migration problem. One needs to
create a table with 4.x and use it with 5.x. I added two
test scripts to the bug report.
tables
Currently in INSERT ... SELECT ... LIMIT ... the compiler uses a
temporary table to store the results of SELECT ... LIMIT .. and then
uses that table as a source for INSERT. The problem is that in some cases
it actually skips the LIMIT clause in doing that and materializes the
whole SELECT result set regardless of the LIMIT.
This fix is limiting the process of filling up the temp table with only
that much rows that will be actually used by propagating the LIMIT value.
The bug report revealed two problems related to min/max optimization:
1. If the length of a constant key used in a SARGable condition for
for the MIN/MAX fields is greater than the length of the field an
unwanted warning on key truncation is issued;
2. If MIN/MAX optimization is applied to a partial index, like INDEX(b(4))
than can lead to returning a wrong result set.
The check for view security was lacking several points :
1. Check with the right set of permissions : for each table ref that
participates in a view there were the right credentials to use in it's
security_ctx member, but these weren't used for checking the credentials.
This makes hard enforcing the SQL SECURITY DEFINER|INVOKER property
consistently.
2. Because of the above the security checking for views was just ruled out
in explicit ways in several places.
3. The security was checked only for the columns of the tables that are
brought into the query from a view. So if there is no column reference
outside of the view definition it was not detecting the lack of access to
the tables in the view in SQL SECURITY INVOKER mode.
The fix below tries to fix the above 3 points.
When a CREATE TABLE command created a table from a materialized
view id does not inherit default values from the underlying table.
Moreover the temporary table used for the view materialization
does not inherit those default values.
In the case when the underlying table contained ENUM fields it caused
misleading error messages. In other cases the created table contained
wrong default values.
The code was modified to ensure inheritance of default values for
materialized views.
Re-work best_access_path() and find_best() to reuse E(#rows(range access)) as
E(#rows(ref[_or_null](const) access) only when it is appropriate.
[This is the final cumulative patch]
When converting DISTINCT to GROUP BY where the columns are from the covering
index and they are quoted twice in the SELECT list the optimizer is creating
improper processing sequence. This is because of the fact that the columns
of the covering index are not recognized as such and treated as non-index
columns.
Generally speaking duplicate columns can safely be removed from the GROUP
BY/DISTINCT list because this will not add or remove new rows in the
resulting set. Duplicates can be removed even if they are not consecutive
(as is the case for ORDER BY, where the duplicate columns can be removed
only if they are consecutive).
So we can safely transform "SELECT DISTINCT a,a FROM ... ORDER BY a" to
"SELECT a,a FROM ... GROUP BY a ORDER BY a" instead of
"SELECT a,a FROM .. GROUP BY a,a ORDER BY a". We can even transform
"SELECT DISTINCT a,b,a FROM ... ORDER BY a,b" to
"SELECT a,b,a FROM ... GROUP BY a,b ORDER BY a,b".
The fix to this bug consists of checking for duplicate columns in the SELECT
list when constructing the GROUP BY list in transforming DISTINCT to GROUP
BY and skipping the ones that are already in.
A query with a group by and having clauses could return a wrong
result set if the having condition contained a constant conjunct
evaluated to FALSE.
It happened because the pushdown condition for table with
grouping columns lost its constant conjuncts.
Pushdown conditions are always built by the function make_cond_for_table
that ignores constant conjuncts. This is apparently not correct when
constant false conjuncts are present.
The bug was as follows: When merge_key_fields() encounters "t.key=X OR t.key=Y" it will
try to join them into ref_or_null access via "t.key=X OR NULL". In order to make this
inference it checks if Y<=>NULL, ignoring the fact that value of Y may be not yet known.
The fix is that the check if Y<=>NULL is made only if value of Y is known (i.e. it is a
constant).
TODO: When merging to 5.0, replace used_tables() with const_item() everywhere in merge_key_fields().
This performance degradation was due to the fact that some
cost evaluation code added into 4.1 in the function find_best was
not merged into the code of the function best_access_path added
together with other code for greedy optimizer.
Added a parameter to the function print_plan. The parameter contains
accumulated cost for a given partial join.
The patch does not include a special test case since this performance
degradation is hard to reproduse with a simple example.
TODO: make the function find_best use the function best_access_path
in order to remove duplication of code which might result in incomplete
merges in the future.
The bug caused wrong result sets for union constructs of the form
(SELECT ... ORDER BY order_list1 [LIMIT n]) ORDER BY order_list2.
For such queries order lists were concatenated and limit clause was
completely neglected.
The SQL standard doesn't allow to use in HAVING clause fields that are not
present in GROUP BY clause and not under any aggregate function in the HAVING
clause. However, mysql allows using such fields. This extension assume that
the non-grouping fields will have the same group-wise values. Otherwise, the
result will be unpredictable. This extension allowed in strict
MODE_ONLY_FULL_GROUP_BY sql mode results in misunderstanding of HAVING
capabilities.
The new error message ER_NON_GROUPING_FIELD_USED message is added. It says
"non-grouping field '%-.64s' is used in %-.64s clause". This message is
supposed to be used for reporting errors when some field is not found in the
GROUP BY clause but have to be present there. Use cases for this message are
this bug and when a field is present in a SELECT item list not under any
aggregate function and there is GROUP BY clause present which doesn't mention
that field. It renders the ER_WRONG_FIELD_WITH_GROUP error message obsolete as
being more descriptive.
The resolve_ref_in_select_and_group() function now reports the
ER_NON_GROUPING_FIELD_FOUND error if the strict mode is set and the field for
HAVING clause is found in the SELECT item list only.
Fixing part2 of this problem: AND didn't work well
with utf8_czech_ci and utf8_lithianian_ci in some cases.
The problem was because when during condition optimization
field was replaced with a constant, the constant's collation
and collation derivation was used later for comparison instead
of the field collation and derivation, which led to non-equal
new condition in some cases.
This patch copies collation and derivation from the field being removed
to the new constant, which makes comparison work using the same collation
with the one which would be used if no condition optimization were done.
In other words:
where s1 < 'K' and s1 = 'Y';
was rewritten to:
where 'Y' < 'K' and s1 = 'Y';
Now it's rewritten to:
where 'Y' collate collation_of_s1 < 'K' and s1 = 'Y'
(using derivation of s1)
Note, the first problem of this bug (with latin1_german2_ci) was fixed
earlier in 5.0 tree, in a separate changeset.
used
In a simple queries a result of the GROUP_CONCAT() function was always of
varchar type.
But if length of GROUP_CONCAT() result is greater than 512 chars and temporary
table is used during select then the result is converted to blob, due to
policy to not to store fields longer than 512 chars in tmp table as varchar
fields.
In order to provide consistent behaviour, result of GROUP_CONCAT() now
will always be converted to blob if it is longer than 512 chars.
Item_func_group_concat::field_type() is modified accordingly.
Multiple equalities were not adjusted after reading constant tables.
It resulted in neglecting good index based methods that could be
used to access of other tables.
out of a nested join to the on conditions for the nest.
The bug happened due to:
1. The function simplify_joins could change on expressions for nested joins.
Yet modified on expressions were not saved in prep_on_expr.
2. On expressions were not restored for nested joins in
reinit_stmt_before_use.
The GROUP_CONCAT uses its own temporary table. When ROLLUP is present
it creates the second copy of Item_func_group_concat. This copy receives the
same list of arguments that original group_concat does. When the copy is
set up the result_fields of functions from the argument list are reset to the
temporary table of this copy.
As a result of this action data from functions flow directly to the ROLLUP copy
and the original group_concat functions shows wrong result.
Since queries with COUNT(DISTINCT ...) use temporary tables to store
the results the COUNT function they are also affected by this bug.
The idea of the fix is to copy content of the result_field for the function
under GROUP_CONCAT/COUNT from the first temporary table to the second one,
rather than setting result_field to point to the second temporary table.
To achieve this goal force_copy_fields flag is added to Item_func_group_concat
and Item_sum_count_distinct classes. This flag is initialized to 0 and set to 1
into the make_unique() member function of both classes.
To the TMP_TABLE_PARAM structure is modified to include the similar flag as
well.
The create_tmp_table() function passes that flag to create_tmp_field().
When the flag is set the create_tmp_field() function will set result_field
as a source field and will not reset that result field to newly created
field for Item_func_result_field and its descendants. Due to this there
will be created copy func to copy data from old result_field to newly
created field.
When there is conjunction of conds, the substitute_for_best_equal_field()
will call the eliminate_item_equal() function in loop to build final
expression. But if eliminate_item_equal() finds that some cond will always
evaluate to 0, then that cond will be substituted by Item_int with value ==
0. In this case on the next iteration eliminate_item_equal() will get that
Item_int and treat it as Item_cond. This is leads to memory corruption and
server crash on cleanup phase.
To the eliminate_item_equal() function was added DBUG_ASSERT for checking
that all items treaten as Item_cond are really Item_cond.
The substitute_for_best_equal_field() now checks that if
eliminate_item_equal() returns Item_int and it's value is 0 then this
value is returned as the result of whole conjunction.
fix_fields() was not called for "order by" variables if the type was a
"constant integer", and thus interpreted as a column index.
However, a local variable is an expression and should not be interpreted
as a column index. Instead it behaves just like when using a user variable
for instance (i.e. it will not affect the ordering).
A subquery transformation changes the HAVING clause of the embedding query if the subquery contains
a GROUP BY clause. Yet the split_sum_func2 function was not applied to the modified HAVING clause.
This could result in wrong answers.
and possibly server crash in mysqld v5.0.
Reported MyISAM table was created in mysqld 4.1 and contains varchar field.
When binary files of that table was moved to 5.0, mysqld treats that varchar
field as a string field.
In order to make grouping server calculates group buffer, and because
that field is string server assumes it has fixed length and doesn't add
space for length, but later that field is converted to varchar field.
Due to this, when field values were actually copied, additional space for
length bytes is taken and buffer overrun occurs, which may lead to server crash.
The calc_group_buffer() function now reserves additional space for length
bytes for VAR_STRING fields, like for VARCHAR fields.
When an ambiguous field name is used in a group by clause a warning is issued
in the find_order_in_list function by a call to push_warning_printf.
An expression that was not always valid was passed to this call as the field
name parameter.
A query with a group by and having clauses could return a wrong
result set if the having condition contained a constant conjunct
evaluated to FALSE.
It happened because the pushdown condition for table with
grouping columns lost its constant conjuncts.
Pushdown conditions are always built by the function make_cond_for_table
that ignores constant conjuncts. This is apparently not correct when
constant false conjuncts are present.
The problem has manifested itself in the cases when we have a nested outer join
for which it can be inferred that one of the inner tables is a single row table.
functions are involved.
When subselect is a join with set functions and no record have been found in
it, end_send_group() sets null_row for all tables in order aggregate functions
to calculate their values correctly. Normally this null_row flag is cleared for
each table in sub_select(), but flush_cached_records() doesn't do so.
Due to this all fields from the table processed by flush_cached_records() are
always evaluated as nulls and whole select produces wrong result.
flush_cached_records() now clears null_row flag at the very beginning.
Remove wrong fix for Bug#14397 - OPTIMIZE TABLE with an open HANDLER causes a crash
Safety fix for bug #13855 "select distinct with group by caused server crash"
- Fixed tests
- Optimized new code
- Fixed some unlikely core dumps
- Better bug fixes for:
- #14397 - OPTIMIZE TABLE with an open HANDLER causes a crash
- #14850 (ERROR 1062 when a quering a view using a Group By on a column that can be null
according to the standard.
The idea is to use Field-classes to implement stored routines
variables. Also, we should provide facade to Item-hierarchy
by Item_field class (it is necessary, since SRVs take part
in expressions).
The patch fixes the following bugs:
- BUG#8702: Stored Procedures: No Error/Warning shown for inappropriate data
type matching;
- BUG#8768: Functions: For any unsigned data type, -ve values can be passed
and returned;
- BUG#8769: Functions: For Int datatypes, out of range values can be passed
and returned;
- BUG#9078: STORED PROCDURE: Decimal digits are not displayed when we use
DECIMAL datatype;
- BUG#9572: Stored procedures: variable type declarations ignored;
- BUG#12903: upper function does not work inside a function;
- BUG#13705: parameters to stored procedures are not verified;
- BUG#13808: ENUM type stored procedure parameter accepts non-enumerated
data;
- BUG#13909: Varchar Stored Procedure Parameter always BINARY string (ignores
CHARACTER SET);
- BUG#14161: Stored procedure cannot retrieve bigint unsigned;
- BUG#14188: BINARY variables have no 0x00 padding;
- BUG#15148: Stored procedure variables accept non-scalar values;
The cause of the bug was the use of end_write_group instead of end_write
in the case when ORDER BY required a temporary table, which didn't take
into account the fact that loose index scan already computes the result
of MIN/MAX aggregate functions (and performs grouping).
The solution is to call end_write instead of end_write_group and to add
the MIN/MAX functions to the list of regular functions so that their
values are inserted into the temporary table.
Bad examples of usage of a string with its length fixed.
The incorrect length in the trigger file configuration descriptor
fixed (BUG#14090).
A hook for unknown keys added to the parser to support old .TRG files.
test_if_order_by_key() expected only Item_fields to be in order->item, thus
failing to find available index on view's field, which results in reported
error.
Now test_if_order_by_key() calls order->item->real_item() to get field for
choosing index.
Initialized usable_keys from table->keys_in_use instead of ~0
in test_if_skip_sort_order(). It was possible that a disabled
index was used for sorting.
large table gives server crash": make sure that when a MyISAM temporary
table is created for a cursor, it's created in its memory root,
not the memory root of the current query.
Procedure analyse() redefines select's fields_list. setup_copy_fields() assumes
that fields_list is a part of all_fields_list. Because select have only
3 columns and analyse() redefines it to have 10 columns, int overrun in
setup_copy_fields() occurs and server goes to almost infinite loop.
Because fields_list used not only to send data ad fields types, it's wrong
to allow procedure redefine it. This patch separates select's fileds_list
and procedure's one. Now if procedure is present, copy of fields_list is
created in procedure_fields_list and it is used for sending data and fields.
Date field was declared as not null, thus expression 'datefield is null'
was always false. For SELECT special handling of such cases is used.
There 'datefield is null' converted to 'datefield eq "0000-00-00"'.
In mysql_update() before creation of select added remove_eq_conds() call.
It makes some optimization of conds and in particular performs conversion
from 'is null' to 'eq'.
Also remove_eq_conds() makes some evaluation of conds and if it founds that
conds is always false then update statement is not processed further.
All this allows to perform some update statements process faster due to
optimized conds, and not wasting resources if conds known to be false.
DISTINCT wasn't optimized away and caused creation of tmp table in wrong
case. This result in integer overrun and running out of memory.
Fix backported from 4.1. Now if optimizer founds that in result be only 1
row it removes distinct.
field::sort_key() now adds length last for varbinary/blob
VARBINARY/BLOB is now sorted by filesort so that shorter strings comes before longer ones
Fixed issues in test cases from last merge