This patch reverts a change introduced by Bug 6951, which incorrectly
set thd->abort_on_warning for stored procedures.
As per internal discussions about the SQL_MODE=TRADITIONAL,
the correct behavior is to *not* abort on warnings even inside an INSERT/UPDATE
trigger.
Tests for Stored Procedures, Stored Functions, Triggers involving SQL_MODE
have been included or revised, to reflect the intended behavior.
(reposting approved patch, to work around source control issues, no review needed)
When statement to be prepared contained CREATE PROCEDURE, CREATE FUNCTION
or CREATE TRIGGER statements with a syntax error in it, the preparation
would fail with syntax error message, but the memory could be corrupted.
The problem occurred because we switch memroot when parse stored
routine or trigger definitions, and on parse error we restored the
original memroot only after performing some memory operations. In more
detail:
- prepared statement would activate its own memory root to parse
the definition of the stored procedure.
- SP would reset this memory root with its own memory root to
parse SP statements
- a syntax error would happen
- prepared statement would restore the original memory root
- stored procedure would restore what it thinks was the original
memory root, but actually was the statement memory root.
That led to double free - in destruction of the statement and in
a next call to mysql_parse().
The solution is to restore memroot right after the failed parsing.
Repair table could crash a server if there is not sufficient
memory (myisam_sort_buffer_size) to operate. Affects not only
repair, but also all statements that use create index by sort:
repair by sort, parallel repair, bulk insert.
Return an error if there is not sufficient memory to store at
least one key per BUFFPEK.
Also fixed memory leak if thr_find_all_keys returns an error.
list using a function
When executing dependent subqueries they are re-inited and re-exec() for
each row of the outer context.
The cause for the bug is that during subquery reinitialization/re-execution,
the optimizer reallocates JOIN::join_tab, JOIN::table in make_simple_join()
and the local variable in 'sortorder' in create_sort_index(), which is
allocated by make_unireg_sortorder().
Care must be taken not to allocate anything into the thread's memory pool
while re-initializing query plan structures between subquery re-executions.
All such items mush be cached and reused because the thread's memory pool
is freed at the end of the whole query.
Note that they must be cached and reused even for queries that are not
otherwise cacheable because otherwise it will grow the thread's memory
pool every time a cacheable query is re-executed.
We provide additional members to the JOIN structure to store references
to the items that need to be cached.
account predicates that become sargable after reading const tables.
In some cases this resulted in choosing non-optimal execution plans.
Now info of such potentially saragable predicates is saved in
an array and after reading const tables we check whether this
predicates has become saragable.
When using index for group by and range access the server isolates
a set of ranges based on the conditions over the key parts of the
index used. Then it uses only the ranges over the GROUP BY fields to
jump from one group to another. Since the GROUP BY fields may form a
prefix over the index, we may use only a prefix of the ranges produced
by the range optimizer.
Each range contains a notion on whether it includes its border values.
The problem is that when using a range prefix, the last range is open
because it assumes that there is a range on the next keypart. Thus when
we use a prefix range as it is, it excludes all border values.
The solution is when ignoring the suffix of the range conditions
(to jump over the GROUP BY prefix only) the server must change the
remaining intervals so they always contain their borders, e.g.
if the whole range was :
(1,-inf) <= (<group_by_col>,<min_max_arg_col>) < (1, 3) we must make
(1) <= (<group_by_col>) <= (1) because (a,b) < (c1,c2) means :
a < c1 OR (a = c1 AND b < c2).
strings
MySQL is setting the flag HA_END_SPACE_KEYS for all the keys that reference
text or varchar columns with collation different than binary.
This was done to handle correctly the situation where a lookup on such a key
may return more than 1 row because of the presence of many rows that differ
only by the amount of trailing space in the table's string column.
Inserting such values however appears to violate the unique checks on
INSERT/UPDATE. Thus that flag must not be set as it will prevent the optimizer
from choosing a faster access method.
This fix removes the setting of the HA_END_SPACE_KEYS flag.
When resolving unqualified name references MySQL was not
checking what is the item type for the reference. Thus
e.g a string literal item that has by convention a name
equal to its string value will also work as a reference to
a SELECT list item or a table field.
Fixed by allowing only Item_ref or Item_field to referenced by
(unqualified) name.
The mysql_alter_table() was able to rename only a table.
The view/table renaming code is moved from the function rename_tables
to the new function called do_rename().
The mysql_alter_table() function calls it when it needs to rename a view.
should fail to create
The problem was that this type of errors was checked during view
creation, which doesn't happen when CREATE VIEW is a statement of
a created stored routine.
The solution is to perform the checks at parse time. The idea of the
fix is that the parser checks if a construction just parsed is allowed
in current circumstances by testing certain flags, and this flags are
reset for VIEWs.
The side effect of this change is that if the user already have
such bogus routines, it will now get a error when trying to do
SHOW CREATE PROCEDURE proc;
(and some other) and when trying to execute such routine he will get
ERROR 1457 (HY000): Failed to load routine test.p5. The table mysql.proc is missing, corrupt, or contains bad data (internal code -6)
However there should be very few such users (if any), and they may
(and should) drop these bogus routines.
The Cached_item_decimal::cmp() method wasn't checking for null pointer
returned from the val_decimal() of the item being cached.
This leads to server crash.
The Cached_item_decimal::cmp() method now check for null values.
hangs on Linux
If REPAIR TABLE ... USE_FRM is issued for table that is located in different
than default database server crash could happen.
In reopen_name_locked_table take database name from table_list (user specified
or default database) instead of from thd (default database).
Affects 4.1 only.
statement.
The problem was that during statement re-execution if the result was
empty the old result could be returned for group functions.
The solution is to implement proper cleanup() method in group
functions.
In a trigger or a function used in a statement it is possible to do
SELECT from a table being modified by the statement. However,
encapsulation of such SELECT into a view and selecting from a view
instead of direct SELECT was not possible.
This happened because tables used by views (which in their turn
were used from functions/triggers) were not excluded from checks
in unique_table() routine as it happens for the rest of tables
added to the statement table list for prelocking.
With this fix we ignore all such tables in unique_table(), thus
providing consistency: inside a trigger or a functions SELECT from
a view may be used where plain SELECT is allowed. Modification of
the same table from function or trigger is still disallowed. Also,
this patch doesn't affect the case where SELECT from the table being
modified is done outside of function of trigger, such SELECTs are
still disallowed (this limitation and visibility problem when function
select from a table being modified are subjects of bug 21326). See
also bug 22427.
OPTIMIZE TABLE with myisam_repair_threads > 1 performs a non-quick
parallel repair. This means that it does not only rebuild all
indexes, but also the data file.
Non-quick parallel repair works so that there is one thread per
index. The first of the threads rebuilds also the new data file.
The problem was that all threads shared the read io cache on the
old data file. If there were holes (deleted records) in the table,
the first thread skipped them, writing only contiguous, non-deleted
records to the new data file. Then it built the new index so that
its entries pointed to the correct record positions. But the other
threads didn't know the new record positions, but put the positions
from the old data file into the index.
The new design is so that there is a shared io cache which is filled
by the first thread (the data file writer) with the new contiguous
records and read by the other threads. Now they know the new record
positions.
Another problem was that for the parallel repair of compressed
tables a common bit_buff and rec_buff was used. I changed it so
that thread specific buffers are used for parallel repair.
A similar problem existed for checksum calculation. I made this
multi-thread safe too.