Problem:
========
CURRENT_TEST: binlog_encryption.rpl_corruption
mysqltest: In included file "./include/wait_for_slave_io_error.inc":
...
At line 72: Slave stopped with wrong error code
**** Slave stopped with wrong error code: 1743 (expected 1595,1913) ****
Analysis:
========
The test emulates the corruption at the various stages of replication for
example in binlog file, in network and in relay log etc. It verifies that all
corruption cases are handled through appropriate error messages.
The test cases which emulate network failure expect following errors.
--ER_SLAVE_RELAY_LOG_WRITE_FAILURE (1595)
--ER_NETWORK_READ_EVENT_CHECKSUM_FAILURE (1743)
Ideally test should expect error codes as 1595 and 1743.
But the test actually waits on incorrect error code 1595,1913
Fix:
===
Added appropriate error code for 'ER_NETWORK_READ_EVENT_CHECKSUM_FAILURE'.
Replaced 1913 with 1743.
The assert indicates that the current transaction got caught uncleaned from
the semisync master's cache when it is signaled to proceed upon its
ack receive.
The reason of missed cleanup turns out to be a flaw in the gtid
connect mode.
A submitted by connecting slave value of its last received event's
binlog file *name* was adopted into
{{Repl_semi_sync_master::m_reply_file_name}} as a part of semisync
initialization.
Notice that the initialization still refines the position part of the
submitted last received event's binlog coordinates.
The master side binlog filename:pos refinement is
specific to the gtid connect mode for purpose of computing the latest
binlog file to resume slave feeding from.
Effectively in the gtid connect mode the computed resumption filename:pos
may appear smaller in which case a new post-connect time committing
transaction may be logged with its filename:pos also less than the
submitted coordinates and that triggers the assert.
Fixed with making the semisync initialization to use the refined filename:pos.
It is guaranteed to be less than any new generated transaction's binlog:pos.
Analysis:
========
In general if there are three groups.
1 - Inserts 32 which fails due to local entry '32' on slave.
2 - Inserts 33
3 - Inserts 34
Each group considers itself as a waiter and it waits for prior group 'waitee'.
This is done in 'register_wait_for_prior_event_group_commit'. If there is no
other parallel group being scheduled then no waitee will be there.
Let us assume 3 groups are being scheduled in parallel.
3-> waits for 2-> waits for->1
'1' upon completion it checks is there any registered subsequent waiter. If
so it wakes up the subsequent waiter with its execution status. This execution
status is stored in wakeup_error.
If '1' failed then it sends corresponding wakeup_error to 2. Then '2' aborts
and it propagates error to '3'. So all further commits are aborted. This
mechanism works only when all transactions reach a stage where they are
waiting for their prior commit to complete.
In case of optimistic following scenario occurs.
1,2,3 are scheduled in parallel.
3 - Reaches group_commit_code waits for 2 to complete.
1 - errors out sets stop_on_error_sub_id=1.
When a group execution results in error its corresponding sub_id is set to
'stop_on_error_sub_id'. Any new groups queued for execution will check if
their sub_id is > stop_on_error_sub_id. If it is true their execution will be
skipped as prior group execution failed. 'skip_event_group=1' will be set.
Since the execution of SQL thread is about to stop we just skip execution of
all the following event groups. We still do all the normal waiting and wakeup
processing between the event groups as a simple way to ensure that everything
is stopped and cleaned up correctly.
Upon error '1' transaction checks for registered waiters. Since no one is
there it simply goes away.
2 - Starts the execution. It checks do I have a waitee.
Since wait_commit_sub_id == entry->last_committed_sub_id no waitee is set.
Secondly: 'entry->stop_on_error_sub_id' is set by '1'st execution. Now
'handle_parallel_thread' code checks if the current group 'sub_id' is greater
than the 'sub_id' set within 'stop_on_error_sub_id'.
Since the above is true 'skip_event_group=true' is set. Simply call
'wait_for_prior_commit' to wakeup all waiters. Group '2' didn't had any
waitee and its execution is skipped. Hence its wakeup_error=0.It sends a
positive wakeup signal to '3'. Which commits. This results in a missed
transaction. i.e 33 is missed and 34 is committed.
Fix:
===
When a worker learns that an earlier transaction execution has failed, and it
should not proceed for further execution, it should mark its own execution
status as failed so that it alerts its followers to abort as well.
Problem:-
When mysql executes INSERT ON DUPLICATE KEY INSERT, the storage engine checks
if the inserted row would generate a duplicate key error. If yes, it returns
the existing row to mysql, mysql updates it and sends it back to the storage
engine.When the table has more than one unique or primary key, this statement
is sensitive to the order in which the storage engines checks the keys.
Depending on this order, the storage engine may determine different rows
to mysql, and hence mysql can update different rows.The order that the
storage engine checks keys is not deterministic. For example, InnoDB checks
keys in an order that depends on the order in which indexes were added to
the table. The first added index is checked first. So if master and slave
have added indexes in different orders, then slave may go out of sync.
Solution:-
Make INSERT...ON DUPLICATE KEY UPDATE unsafe while using stmt or mixed format
When there is more then one unique key.
Although there is two exception.
1. Auto Increment key is not counted because Innodb will get gap lock for
failed Insert and concurrent insert will get a next increment value. But if
user supplies auto inc value it can be unsafe.
2. Count only unique keys for which insertion is performed.
So this patch also addresses the bug id #72921
- The commit ab6dd77408 wrongly sets the
condition inside innobase_srv_conc_enter_innodb(). Problem is that
InnoDB makes the thread to sleep indefinitely if it is a replication
slave thread.
Thanks to Sujatha Sivakumar for contributing the replication test case.
Problem:
=======
Failed CREATE OR REPLACE TEMPORARY TABLE statement which dropped the table but
failed at a later stage of creation of temporary table is not written to
binarylog in row based replication. This causes the slave to diverge.
Analysis:
========
CREATE OR REPLACE statements work as shown below.
CREATE OR REPLACE TABLE table_name (a int);
is basically the same as:
DROP TABLE IF EXISTS table_name;
CREATE TABLE table_name (a int);
Hence every CREATE OR REPLACE TABLE command which dropped the table should be
written to binary log, even when following CREATE TABLE part fails. In order
to achieve this, during the execution of CREATE OR REPLACE command, when a
table is dropped 'thd->log_current_statement' flag is set. When table creation
results in an error within 'mysql_create_table' code, the error handling part
looks for this flag. If it is set the failed CREATE OR REPLACE statement is
written into the binary log inspite of error. This ensure that slave doesn't
diverge from the master. In case of row based replication the error handling
code returns very early, if the table is of type temporary. This is done based
on the assumption that temporary tables are not replicated in row based
replication.
It fails to handle the cases where a temporary table was created as part of
statement based replication at an earlier stage and the binary log format was
changed to row because of an unsafe statement. In this case when a CREATE OR
REPLACE statement is executed on this temporary table it will dropped but the
query will not be written to binary log. Hence slave diverges.
Fix:
===
In error handling code check the return status of create table operation. If
it is successful and replication mode is row based and table is of type
temporary then return. Other wise proceed further to the code which checks for
thd->log_current_statement flag and does appropriate logging.
MDEV-5589 commit set up a policy to skip DROP TEMPORARY TABLE binary logging
in case the target table has not been "CREATEed" in binlog (no CREATE
Query-log-event was logged into the binary log).
It turns out that
1. the rule did not cover non-existing table DROPped with IF-EXISTS clause.
The logged-create knowledge for the non-existing one does not even need
MDEV-5589 patch, and
2. connection close disobeys it to trigger automatic DROP-IF-EXISTS
binlogging.
Either 1 or 2 or even both is/are also responsible for unexpected binlog
records observed in MDEV-17863, actually rendering a referred
@@global.read_only irrelevant as far as the described stored procedure
definition *and* the ROW binlog-format are concerned.
Problem:
=======
Executing test with following options will result in test failure.
./mtr rpl.kill_race_condition{,,,,,,,,,,} --repeat=10 --par 12 --mem
Fix:
====
Test simulates applier thread kill scenario while applying a row event. But it
doesn't wait for applier to catch the error stop.
Added :wait_for_slave_sql_error.inc to catch the error.
Test uses START SLAVE as a final step and doesn't wait for both threads to
start.
Added: start_slave.inc
The test allowed non-deterministic execution thanks to unresetable status
var of Slave_connections.
Fixed with expecting a correct value for Slaves_connected.
Problem:
=======
rpl_blackhole.test fails when executed with following options
mysqld=--binlog_annotate_row_events=1, mysqld=--replicate_annotate_row_events=1
Test output:
------------
worker[1] Using MTR_BUILD_THREAD 300, with reserved ports 16000..16019
rpl.rpl_blackhole_bug 'mix' [ pass ] 791
rpl.rpl_blackhole_bug 'row' [ fail ]
Replicate_Wild_Ignore_Table
Last_Errno 1032
Last_Error Could not execute Update_rows_v1 event on table test.t1; Can't find
record in 't1', Error_code: 1032; handler error HA_ERR_END_OF_FILE; the event's
master log master-bin.000001, end_log_pos 1510
Analysis:
=========
Enabling "replicate_annotate_row_events" on slave, Tells the slave to write
annotate rows events received from the master to its own binary log. The
received annotate events are applied after the Gtid event as shown below.
thd->query() will be set to the actual query received from the master, through
annotate event. Annotate_rows event should not be deleted after the event is
applied as the thd->query will be used to generate new Annotate_rows event
during applying the subsequent Rows events. After the last Rows event has been
applied, the saved Annotate_rows event (if any) will be deleted.
In balckhole engine all the DML operations are noops as they donot store any
data. They simply return success without doing any operation. But the existing
strictly expects thd->query() to be 'NULL' to identify that row based
replication is in use. This assumption will fail when row annotations are
enabled as the query is not 'NULL'. Hence various row based operations like
'update', 'delete', 'index lookup' will fail when row annotations are enabled.
Fix:
===
Extend the row based replication check to include row annotations as well.
i.e Either the thd->query() is NULL or thd->query() points to query and row
annotations are in use.
Simulation of a big-sized event in rpl.rpl_semi_sync_skip_repl did not clean
up after itself so screw the last binlog event offset which could jump
backwards.
The test is refined to rotate a binlog file with simulation and use the next
one for logics of the test incl master-slave synchonization.
Problem:
=======
Whel rpl.rpl_row_mysqlbinlog test is executed as shown below it fails with
result content mismatch.
perl mtr rpl_row_mysqlbinlog --mysqld=--binlog-annotate-row-events=1
Analysis:
=========
When row annotations are enabled the actual query is written into the binlog
which helps users to understand the query, even when row based replication is
enabled.
For example: Simple insert in row based replication looks like shown below.
#190402 16:31:27 server id 1 end_log_pos 526 Annotate_rows:
#Q> insert into t values (10)
#190402 16:31:27 server id 1 end_log_pos 566 Table_map: `test`.`t` mapped to number 19
# at 566
#190402 16:31:27 server id 1 end_log_pos 600 Write_rows: table id 19 flags: STMT_END_F
BINLOG '
B0GjXBMBAAAAKAAAADYCAAAAABMAAAAAAAEABHRlc3QAAXQAAQMAAQ==
B0GjXBcBAAAAIgAAAFgCAAAAABMAAAAAAAEAAf/+CgAAAA==
'/*!*/;
# at 600
The test creates some binary log events and redirects them into a SQL file.
Executes RESET MASTER and sources the SQL file back on clean master and verifies
that the data is available. Please refer following steps.
../client/mysqlbinlog ./var/mysqld.1/data/master-bin.000001 > test.sql
../client/mysql -uroot -S./var/tmp/mysqld.1.sock -Dtest < test.sql
../client/mysqlbinlog ./var/mysqld.1/data/master-bin.000001 -v > row.sql
When the row based replication specific SQL file is sourced once again on master
the newly generated binlog will treat the entire "BASE 64" encoded event as
query and write it into the binary log.
Output from 'row.sql':
#Q> BINLOG '
#Q> B0GjXBMBAAAAKAAAADYCAAAAABMAAAAAAAEABHRlc3QAAXQAAQMAAQ==
#Q> B0GjXBcBAAAAIgAAAFgCAAAAABMAAAAAAAEAAf/+CgAAAA==
#190402 16:31:27 server id 1 end_log_pos 657 Table_map: `test`.`t` mapped to number 23
# at 657
#190402 16:31:27 server id 1 end_log_pos 691 Write_rows: table id 23 flags: STMT_END_F
BINLOG '
B0GjXBMBAAAAKAAAAJECAAAAABcAAAAAAAEABHRlc3QAAXQAAQMAAQ==
B0GjXBcBAAAAIgAAALMCAAAAABcAAAAAAAEAAQH+CgAAAA==
### INSERT INTO `test`.`t`
### SET
### @1=10
'/*!*/;
# at 691
This is expected behaviour as we cannot extract query from BASE 64 encoded
input. This causes more number of binary logs to be generated when the test is
executed with row annotations.
The following lines from test assumes that only two binary logs will contain
entire data.
--echo --- Test 4 Second Remote test --
---exec $MYSQL_BINLOG --read-from-remote-server --user=root --host=127.0.0.1
--port=$MASTER_MYPORT master-bin.000001 > $MYSQLTEST_VARDIR/tmp/remote.sql
---exec $MYSQL_BINLOG --read-from-remote-server --user=root --host=127.0.0.1
--port=$MASTER_MYPORT master-bin.000002 >> $MYSQLTEST_VARDIR/tmp/remote.sql
In a case when row annotations are enabled the data gets spread across four
binary logs. As test uses only the first two binary log files, data available in
other binary logs gets missed. Hence test fails with result content mismatch as
less data is avaialble.
Fix:
====
Use "-to-the-last" option of "mysqlbinlog" tool which will ensure that all the
available binary log specific contents are included in .sql file.
select from I_S
Problem:
========
When applier thread tries to access 'variable_name' of
INFORMATION_SCHEMA.SESSION_VARIABLES table through triggers, it results in an
abnormal exit of slave server.
Analysis:
========
At the time of replication of stored routines and triggers, their associated
security context will be sent by the master. The applier thread on the slave
server will use this information to set the required security context for the
execution of stored routines and triggers. This is achieved as follows.
->The stored routine object has a member named 'm_security_ctx' which holds the
security context received from master.
->The applier thread's security_ctx is stored into a 'backup' object.
->Set the applier thread's security_ctx to 'm_security_ctx'.
->Upon the completion of stored routine execution restore the original security
context of applier thread from the backup.
During the above process the 'm_security_ctx' object is not initialized
properly. Hence the 'external_user' of 'm_security_ctx' has invalid value for
this variable and accessing this variable results in abnormal exit of server.
Fix:
===
Invoke the Security_context::init() call from the constructor of stored routine
so that 'm_security_ctx' gets initialized properly.
32 bit int
Row-based slave applier could not parse correctly the table id when
the value exceeded the max of 32 bit unsigned int.
The reason turns out in that the being parsed value placeholder
was sized as 4 bytes.
The type is fixed to ulonglong.
Additionally the patch works around Rows_log_event::m_table_id 4 bytes
size on 32 bits platforms. In case of last_table_id value overflows
the 4 byte max, there won't be the zero value for m_table_id generated
and the first wrapped-around value is one, this is thanks to excluding
UINT_MAX32 + 1 from TABLE_SHARE::table_map_id.
consistently) on Replication Slave
lower_case_table_names 0 -> 1 replication works, it's safe as long as
mixed case names mapping to the lower case ones is one-to-one
If a mtr test runs multiple servers and only some of them get
restarted on whatever reason with new command-line parameters,
then subsequent mtr test may fail, because no cleanup is performed.
Replication and Galera test suites are affected.
In the mtr script, there is a server_need_restart function
that decides whether we need to start a new mysqld process before
the new (next) test. If the mysqld parameters were changed in the
previous test - not necessarily the parameters of the primary mysqld
server, maybe even the secondary server parameters - this function
decides to start a new mysqld process. But since it does not remove
the old (changed) parameters, the new process starts with the
parameters changed by the *previous* test.
To correct this error, we must delete the modified process
parameters after checking that they have been changed during
the previous test.
This patch also simplifies and makes more stable the
galera_drop_database test, during debugging of which this
problem was detected.
https://jira.mariadb.org/browse/MDEV-17421
This would happen especially in optimistic parallel replication, where there
is a good chance that a transaction will be rolled back (due to conflicts)
after it has executed record_gtid(). If the transaction did any deletions of
old rows as part of record_gtid(), those deletions will be undone as well.
And the code did not properly ensure that the deletions would be re-tried.
This patch makes record_gtid() remember the list of deletions done as part
of a transaction. Then in rpl_slave_state::update() when the changes have
been committed, we discard the list. However, in case of error and rollback,
in cleanup_context() we will instead put the list back into
rpl_global_gtid_slave_state so that the deletions will be re-tried later.
Probably fixes part of the cause of MDEV-12147 as well.
Signed-off-by: Kristian Nielsen <knielsen@knielsen-hq.org>
with spatial index
So the issue is since it is spatial index , at the time of searching index
for key (Rows_log_event::find_row) we use wrong field image we use
Field::itRAW while we should be using Field::itMBR
specific temporary errors
The optimistic parallel slave's worker thread could face a run-time error due to
the algorithm's specifics which allows for conflicts like the reported
"Can't find record in 'table'".
A typical stack is like
{noformat}
#0 handler::print_error (this=0x61c00008f8a0, error=149, errflag=0) at handler.cc:3650
#1 0x0000555555e95361 in write_record (thd=thd@entry=0x62a0000a2208, table=table@entry=0x61f00008ce88, info=info@entry=0x7fffdee356d0) at sql_insert.cc:1944
#2 0x0000555555ea7767 in mysql_insert (thd=thd@entry=0x62a0000a2208, table_list=0x61b00012ada0, fields=..., values_list=..., update_fields=..., update_values=..., duplic=<optimized out>, ignore=<optimized out>) at sql_insert.cc:1039
#3 0x0000555555efda90 in mysql_execute_command (thd=thd@entry=0x62a0000a2208) at sql_parse.cc:3927
#4 0x0000555555f0cc50 in mysql_parse (thd=0x62a0000a2208, rawbuf=<optimized out>, length=<optimized out>, parser_state=<optimized out>) at sql_parse.cc:7449
#5 0x00005555566d4444 in Query_log_event::do_apply_event (this=0x61200005b9c8, rgi=<optimized out>, query_arg=<optimized out>, q_len_arg=<optimized out>) at log_event.cc:4508
#6 0x00005555566d639e in Query_log_event::do_apply_event (this=<optimized out>, rgi=<optimized out>) at log_event.cc:4185
#7 0x0000555555d738cf in Log_event::apply_event (rgi=0x61d0001ea080, this=0x61200005b9c8) at log_event.h:1343
#8 apply_event_and_update_pos_apply (ev=ev@entry=0x61200005b9c8, thd=thd@entry=0x62a0000a2208, rgi=rgi@entry=0x61d0001ea080, reason=<optimized out>) at slave.cc:3479
#9 0x0000555555d8596b in apply_event_and_update_pos_for_parallel (ev=ev@entry=0x61200005b9c8, thd=thd@entry=0x62a0000a2208, rgi=rgi@entry=0x61d0001ea080) at slave.cc:3623
#10 0x00005555562aca83 in rpt_handle_event (qev=qev@entry=0x6190000fa088, rpt=rpt@entry=0x62200002bd68) at rpl_parallel.cc:50
#11 0x00005555562bd04e in handle_rpl_parallel_thread (arg=arg@entry=0x62200002bd68) at rpl_parallel.cc:1258
{noformat}
Here {{handler::print_error}} computes whether to error log the
current error when --log-warnings > 1. The decision flag is consulted
bu {{my_message_sql()}} which can be eventually called.
In the bug case the decision is to log.
However in the optimistic mode slave applier case any conflict is
attempted to resolve with rollback and retry to success. Hence the
logging is at least extraneous.
The case is fixed with adding a new flag {{ME_LOG_AS_WARN}} which
{{handler::print_error}} may propagate further on through {{my_error}}
when the error comes from an optimistically running slave worker thread.
The new flag effectively requests the warning level for the errlog record,
while the thread's DA records the actual error (which is regarded as temporary one
by the parallel slave error handler).
Problem was that detection of temporary tables was all wrong for
RENAME TABLE.
(Temporary tables where opened by top level call to
open_temporary_tables(), which can't detect if a temporary table
was renamed to something and then reused).
Fixed by adding proper parsing of rename list to check against
the current name of a table at each rename stage.
Also change do_rename_temporary() to check against the current
state of temporary tables, not according to the state of start
of RENAME TABLE.