is_last_prefix <= 0, file .\opt_range.cc.
SELECT ... GROUP BY bit field failed with an assertion if the
bit length of that field was not divisible by 8.
Index lookup does not always guarantee that we can
simply remove the relevant conditions from the WHERE
clause. Reasons can be e.g. conversion errors,
partial indexes etc.
The optimizer was removing these parts of the WHERE
condition without any further checking.
This leads to "false positives" when using indexes.
Fixed by checking the index reference conditions
(using WHERE) when using indexes with sub-queries.
only on some occasions
Referencing an element from the SELECT list in a WHERE
clause is not permitted. The namespace of the WHERE
clause is the table columns only. This was not enforced
correctly when resolving outer references in sub-queries.
Fixed by not allowing references to aliases in a
sub-query in WHERE.
8bit escape characters, termination and enclosed characters
were silently ignored by SELECT INTO query, but LOAD DATA INFILE
algorithm is 8bit-clean, so data was corrupted during
encoding.
Loose index scan does the grouping so the temp table does
not need to do it, even when sorting.
Fixed by checking if the grouping is already done before
doing sorting and grouping in a temp table and do only
sorting.
This bug is actually two. The first one manifests itself on an EXPLAIN
SELECT query with nested subqueries that employs the filesort algorithm.
The whole SELECT under explain is marked as UNCACHEABLE_EXPLAIN to preserve
some temporary structures for explain. As a side-effect of this values of
nested subqueries weren't cached and subqueries were re-evaluated many
times. Each time buffer for filesort was allocated but wasn't freed because
freeing occurs at the end of topmost SELECT. Thus all available memory was
eaten up step by step and OOM event occur.
The second bug manifests itself on SELECT queries with conditions where
a subquery result is compared with a key field and the subquery itself also
has such condition. When a long chain of such nested subqueries is present
the stack overrun occur. This happens because at some point the range optimizer
temporary puts the PARAM structure on the stack. Its size if about 8K and
the stack is exhausted very fast.
Now the subselect_single_select_engine::exec function allows subquery result
caching when the UNCACHEABLE_EXPLAIN flag is set.
Now the SQL_SELECT::test_quick_select function calls the check_stack_overrun
function for stack checking purposes to prevent server crash.
SPATIAL key is fine actually, but the chk_key() function
mistakenly returns error. It tries to compare checksums
of btree and SPATIAL keys while the checksum for the SPATIAL isn't
calculated (always 0). Same thing with FULLTEXT keys is handled
using full_text_keys counter, so fixed by counting both
SPATIAL and FULLTEXT keys in that counter.
Comparison of a BIGINT NOT NULL column with a constant arithmetic
expression that evaluates to NULL caused error 1048: "Column '...'
cannot be null".
Made convert_constant_item() check if the constant expression is NULL
before attempting to store it in a field. Attempts to store NULL in a
NOT NULL field caused query errors.
checked for each record'
The problem was in incorrectly calculated length of the buffer used to
store a hexadecimal representation of an index map in
select_describe(). This could result in buffer overrun and stack
corruption under some circumstances.
Fixed by correcting the calculation.
The columns in HAVING can reference the GROUP BY and
SELECT columns. There can be "table" prefixes when
referencing these columns. And these "table" prefixes
in HAVING use the table alias if available.
This means that table aliases are subject to the same
storage rules as table names and are dependent on
lower_case_table_names in the same way as the table
names are.
Fixed by :
1. Treating table aliases as table names
and make them lowercase when printing out the SQL
statement for view persistence.
2. Using case insensitive comparison for table
aliases when requested by lower_case_table_names
max_length parameter for BLOB-returning functions must be big enough
for any possible content. Otherwise the field created for a table
will be too small.
When we insert a record into MYISAM table which is almost 'full',
we first write record data in the free space inside a file, and then
check if we have enough space after the end of the file.
So if we don't have the space, table will left corrupted.
Similar error also happens when we updata MYISAM tables.
Fixed by modifying write_dynamic_record and update_dynamic_record functions
to check for free space before writing parts of a record
After adding an index the <VARBINARY> IN (SELECT <BINARY> ...)
clause returned a wrong result: the VARBINARY value was illegally padded
with zero bytes to the length of the BINARY column for the index search.
(<VARBINARY>, ...) IN (SELECT <BINARY>, ... ) clauses are affected too.
BETWEEN was more lenient with regard to what it accepted as a DATE/DATETIME
in comparisons than greater-than and less-than were. ChangeSet makes < >
comparisons similarly robust with regard to trailing garbage (" GMT-1")
and "missing" leading zeros. Now all three comparators behave similarly
in that they throw a warning for "junk" at the end of the data, but then
proceed anyway if possible. Before < > fell back on a string- (rather than
date-) comparison when a warning-condition was raised in the string-to-date
conversion. Now the fallback only happens on actual errors, while warning-
conditions still result in a warning being to delivered to the client.