- Merge sslaccept and sslconnect.
- Atomically "reset" vio to VIO_TYPE_SSL when the SSL connection has
succeeded, this avoids having to revert anything and thus protects
against "close_active_vio" in the middle.
- Add some variance to the testcase
The optimization that uses a unique index to remove GROUP BY, did not
ensure that the index was actually used, thus violating the ORDER BY
that is impled by GROUP BY.
Fixed by replacing GROUP BY with ORDER BY if the GROUP BY clause contains
a unique index. In case GROUP BY ... ORDER BY null is used, GROUP BY is
simply removed.
If, after the tables are locked, one of the conditions to read from a
HANDLER table is not met, the handler code wrongly jumps to a error path
that won't unlock the tables.
The user-visible effect is that after a error in a handler read command,
all subsequent handler operations on the same table will hang.
The fix is simply to correct the code to jump to the (same) error path that
unlocks the tables.
The problem from a user's perspective: user creates table A, and then tries
to CREATE TABLE a SELECT from A - and this causes a deadlock error, a hang,
or fails with a debug assert, but only if the storage engine is InnoDB.
The origin of the problem: InnoDB uses case-insensitive collation
(system_charset_info) when looking up the internal table share, thus returning
the same share for 'a' and 'A'.
Cause of the user-visible behavior: since the same share is returned to SQL
locking subsystem, it assumes that the same table is first locked (within the
same session) for WRITE, and then for READ, and returns a deadlock error.
However, the code is wrong in not properly cleaning up upon an error, leaving
external locks in place, which leads to assertion failures and hangs.
Fix that has been implemented: the SQL layer should properly propagate the
deadlock error, cleaning up and freeing all resources.
Further work towards a more complete solution: InnoDB should not use case
insensitive collation for table share hash if table names on disk honor the case.
Recommit to 5.1.22.
The bug caused memory corruption for some queries with top OR level
in the WHERE condition if they contained equality predicates and
other sargable predicates in disjunctive parts of the condition.
The corruption happened because the upper bound of the memory
allocated for KEY_FIELD and SARGABLE_PARAM internal structures
containing info about potential lookup keys was calculated incorrectly
in some cases. In particular it was calculated incorrectly when the
WHERE condition was an OR formula with disjuncts being AND formulas
including equalities and other sargable predicates.
Test case contains possible race conditions. This patch fixes these race
conditions and also adjust the test to execute according to its documentation.
This is a performance bug, related to the parsing or 'OR' and 'AND' boolean
expressions.
Let N be the number of expressions involved in a OR (respectively AND).
When N=1
For example, "select 1" involve only 1 term: there is no OR operator.
In 4.0 and 4.1, parsing expressions not involving OR had no overhead.
In 5.0, parsing adds some overhead, with Select->expr_list.
With this patch, the overhead introduced in 5.0 has been removed,
so that performances for N=1 should be identical to the 4.0 performances,
which are optimal (there is no code executed at all)
The overhead in 5.0 was in fact affecting significantly some operations.
For example, loading 1 Million rows into a table with INSERTs,
for a table that has 100 columns, leads to parsing 100 Millions of
expressions, which means that the overhead related to Select->expr_list
is executed 100 Million times ...
Considering that N=1 is by far the most probable expression,
this case should be optimal.
When N=2
For example, "select a OR b" involves 2 terms in the OR operator.
In 4.0 and 4.1, parsing expressions involving 2 terms created 1 Item_cond_or
node, which is the expected result.
In 5.0, parsing these expression also produced 1 node, but with some extra
overhead related to Select->expr_list : creating 1 list in Select->expr_list
and another in Item_cond::list is inefficient.
With this patch, the overhead introduced in 5.0 has been removed
so that performances for N=2 should be identical to the 4.0 performances.
Note that the memory allocation uses the new (thd->mem_root) syntax
directly.
The cost of "is_cond_or" is estimated to be neglectable: the real problem
of the performance degradation comes from unneeded memory allocations.
When N>=3
For example, "select a OR b OR c ...", which involves 3 or more terms.
In 4.0 and 4.1, the parser had no significant cost overhead, but produced
an Item tree which is difficult to evaluate / optimize during runtime.
In 5.0, the parser produces a better Item tree, using the Item_cond
constructor that accepts a list of children directly, but at an extra cost
related to Select->expr_list.
With this patch, the code is implemented to take the best of the two
implementations:
- there is no overhead with Select->expr_list
- the Item tree generated is optimized and flattened.
This is achieved by adding children nodes into the Item tree directly,
with Item_cond::add(), which avoids the need for temporary lists and memory
allocation
Note that this patch also provide an extra optimization, that the previous
code in 5.0 did not provide: expressions are flattened in the Item tree,
based on what the expression already parsed is, and not based on the order
in which rules are reduced.
For example : "(a OR b) OR c", "a OR (b OR c)" would both be represented
with 2 Item_cond_or nodes before this patch, and with 1 node only with this
patch. The logic used is based on the mathematical properties of the OR
operator (it's associative), and produces a simpler tree.
Although the query cache doesn't support retrieval of statements containing
column level access control, it was still possible to cache such statements
thus wasting memory.
This patch extends the access control check on the target tables to avoid
caching a statement with column level restrictions.
Views are excepted and can be cached but only retrieved by super user account.