compatibility problems
Pages that are encrypted contain post encryption checksum on
different location that normal checksum fields. Therefore,
we should before decryption check this checksum to avoid
unencrypting corrupted pages. After decryption we can use
traditional checksum check to detect if page is corrupted
or unencryption was done using incorrect key.
Pages that are page compressed do not contain any checksum,
here we need to fist unencrypt, decompress and finally
use tradional checksum check to detect page corruption
or that we used incorrect key in unencryption.
buf0buf.cc: buf_page_is_corrupted() mofified so that
compressed pages are skipped.
buf0buf.h, buf_block_init(), buf_page_init_low():
removed unnecessary page_encrypted, page_compressed,
stored_checksum, valculated_checksum fields from
buf_page_t
buf_page_get_gen(): use new buf_page_check_corrupt() function
to detect corrupted pages.
buf_page_check_corrupt(): If page was not yet decrypted
check if post encryption checksum still matches.
If page is not anymore encrypted, use buf_page_is_corrupted()
traditional checksum method.
If page is detected as corrupted and it is not encrypted
we print corruption message to error log.
If page is still encrypted or it was encrypted and now
corrupted, we will print message that page is
encrypted to error log.
buf_page_io_complete(): use new buf_page_check_corrupt()
function to detect corrupted pages.
buf_page_decrypt_after_read(): Verify post encryption
checksum before tring to decrypt.
fil0crypt.cc: fil_encrypt_buf() verify post encryption
checksum and ind fil_space_decrypt() return true
if we really decrypted the page.
fil_space_verify_crypt_checksum(): rewrite to use
the method used when calculating post encryption
checksum. We also check if post encryption checksum
matches that traditional checksum check does not
match.
fil0fil.ic: Add missed page type encrypted and page
compressed to fil_get_page_type_name()
Note that this change does not yet fix innochecksum tool,
that will be done in separate MDEV.
Fix test failures caused by buf page corruption injection.
Analysis: Problem is that both encrypted tables and compressed tables use
FIL header offset FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION to store
required metadata. Furhermore, for only compressed tables currently
code skips compression.
Fixes:
- Only encrypted pages store key_version to FIL header offset FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION,
no need to fix
- Only compressed pages store compression algorithm to FIL header offset FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION,
no need to fix as they have different page type FIL_PAGE_PAGE_COMPRESSED
- Compressed and encrypted pages now use a new page type FIL_PAGE_PAGE_COMPRESSED_ENCRYPTED and
key_version is stored on FIL header offset FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION and compression
method is stored after FIL header similar way as compressed size, so that first
FIL_PAGE_COMPRESSED_SIZE is stored followed by FIL_PAGE_COMPRESSION_METHOD
- Fix buf_page_encrypt_before_write function to really compress pages if compression is enabled
- Fix buf_page_decrypt_after_read function to really decompress pages if compression is used
- Small style fixes
Analysis: Problem was that we did create crypt data for encrypted table but
this new crypt data was not written to page 0. Instead a default crypt data
was written to page 0 at table creation.
Fixed by explicitly writing new crypt data to page 0 after successfull
table creation.
Step 1:
-- Remove page encryption from dictionary (per table
encryption will be handled by storing crypt_data to page 0)
-- Remove encryption/compression from os0file and all functions
before that (compression will be added to buf0buf.cc)
-- Use same CRYPT_SCHEME_1 for all encryption methods
-- Do some code cleanups to confort InnoDB coding style