- Any temporary tables created under read-only mode will never be logged
to binary log. Any usage of these tables to update normal tables, even
after read-only has been disabled, will use row base logging (as the
temporary table will not be on the slave).
- Analyze, check and repair table will not be logged in read-only mode.
Other things:
- Removed not used varaibles in
MYSQL_BIN_LOG::flush_and_set_pending_rows_event.
- Set table_share->table_creation_was_logged for all normal tables.
- THD::binlog_query() now returns -1 if statement was not logged., This
is used to update table_share->table_creation_was_logged.
- Don't log admin statements in opt_readonly is set.
- Table's that doesn't have table_creation_was_logged will set binlog format to row
logging.
- Removed not needed/wrong setting of table->s->table_creation_was_logged
in create_table_from_items()
Note: this patch is for 5.6.
Detected by ASAN.
The patch fixes the cleanup of parser stack pointers.
Reviewed-by: Guilhem Bichot <guilhem.bichot@oracle.com>
The parser returned a syntax error message for the queries with join
expressions like this t1 JOIN t2 [LEFT | RIGHT] JOIN t3 ON ... ON ... when
the second operand of the outer JOIN operation with ON clause was another
join expression with ON clause. In this expression the JOIN operator is
right-associative, i.e. expression has to be parsed as the expression
t1 JOIN (t2 [LEFT | RIGHT] JOIN t3 ON ... ) ON ...
Such join expressions are hard to parse because the outer JOIN is
left-associative if there is no ON clause for the first outer JOIN operator.
The patch implements the solution when the JOIN operator is always parsed
as right-associative and builds first the right-associative tree. If it
happens that there is no corresponding ON clause for this operator the
tree is converted to left-associative.
The idea of the solution was taken from the patch by Martin Hansson
"WL#8083: Fixed the join_table rule" from MySQL-8.0 code line.
As the grammar rules related to join expressions in MySQL-8.0 and
MariaDB-5.5+ are quite different MariaDB solution could not borrow
any code from the MySQL-8.0 solution.
Problem:
========
The test now fails with the following trace:
CURRENT_TEST: rpl.rpl_parallel_temptable
--- /mariadb/10.4/mysql-test/suite/rpl/r/rpl_parallel_temptable.result
+++ /mariadb/10.4/mysql-test/suite/rpl/r/rpl_parallel_temptable.reject
@@ -194,7 +194,6 @@
30 conservative
31 conservative
32 optimistic
-33 optimistic
Analysis:
=========
The part of test which fails with result content mismatch is given below.
CREATE TEMPORARY TABLE t4 (a INT PRIMARY KEY) ENGINE=InnoDB;
INSERT INTO t4 VALUES (32);
INSERT INTO t4 VALUES (33);
INSERT INTO t1 SELECT a, "optimistic" FROM t4;
slave_parallel_mode=optimistic
The expectation of the above test script is, INSERT FROM SELECT should read both
32, 33 and populate table 't1'. But this expectation fails occasionally.
All three INSERT statements are handed over to three different slave parallel
workers. Temporary tables are not safe for parallel replication. They were
designed to be visible to one thread only, so have no table locking. Thus there
is no protection against two conflicting transactions committing in parallel and
things like that.
So anything that uses temporary tables will be serialized with anything before
it, when using parallel replication by using a "wait_for_prior_commit" function
call. This will ensure that the each transaction is executed sequentially.
But there exists a code path in which the above wait doesn't happen. Because of
this at times INSERT from SELECT doesn't wait for the INSERT (33) to complete
and it completes its executes and enters commit stage. Hence only row 32 is
found in those cases resulting in test failure.
The wait needs to be added within "open_temporary_table" call. The code looks
like this within "open_temporary_table".
Each thread tries to open temporary table in 3 different ways:
case 1: Find a temporary table which is already in use by using
find_temporary_table(tl) && wait_for_prior_commit()
case 2: If above failed then try to look for temporary table which is marked for
free for reuse. This internally calls "wait_for_prior_commit()" if table
is found.
find_and_use_tmp_table(tl, &table)
case 3: If none of the above open a new table handle from table share.
if (!table && (share= find_tmp_table_share(tl)))
{ table= open_temporary_table(share, tl->get_table_name(), true); }
At present the "wait_for_prior_commit" happens only in case 1 & 2.
Fix:
====
On slave add a call for "wait_for_prior_commit" for case 3.
The above wait on slave will solve the issue. A more detailed fix would be to
mark temporary tables as not safe for parallel execution on the master side.
In order to do that, on the master side, mark the Gtid_log_event specific flag
FL_TRANSACTIONAL to be false all the time. So that they are not scheduled
parallely.
query with VALUES()
A table value constructor can be used in all contexts where a select
can be used. In particular an ORDER BY clause or a LIMIT clause or both
of them can be attached to a table value constructor to produce a new
query. Unfortunately execution of such queries was not supported.
This patch fixes the problem.
If a derived table has SELECT DISTINCT, provide index statistics for it so that the join optimizer in the
upper select knows that ref access to the table will produce one row.
it always required UPDATE privilege on views, not being able to detect
when a views was not actually updated in multi-update.
fix: instead of marking all tables as "updating" by default,
only set "updating" on tables that will actually be updated
by multi-update. And mark the view "updating" if any of the
view's tables is.
1. Always drop merged_for_insert flag on cleanup (there could be errors which prevent TABLE to be assigned)
2. Make more precise cleanup of select parts which was touched
st_select_lex::handle_derived() and mysql_handle_list_of_derived() had
exactly the same implementations.
- Adding a new method LEX::handle_list_of_derived() instead
- Removing public function mysql_handle_list_of_derived()
- Reusing LEX::handle_list_of_derived() in st_select_lex::handle_derived()
The problem was originally stated in
http://bugs.mysql.com/bug.php?id=82212
The size of an base64-encoded Rows_log_event exceeds its
vanilla byte representation in 4/3 times.
When a binlogged event size is about 1GB mysqlbinlog generates
a BINLOG query that can't be send out due to its size.
It is fixed with fragmenting the BINLOG argument C-string into
(approximate) halves when the base64 encoded event is over 1GB size.
The mysqlbinlog in such case puts out
SET @binlog_fragment_0='base64-encoded-fragment_0';
SET @binlog_fragment_1='base64-encoded-fragment_1';
BINLOG @binlog_fragment_0, @binlog_fragment_1;
to represent a big BINLOG.
For prompt memory release BINLOG handler is made to reset the BINLOG argument
user variables in the middle of processing, as if @binlog_fragment_{0,1} = NULL
is assigned.
Notice the 2 fragments are enough, though the client and server still may
need to tweak their @@max_allowed_packet to satisfy to the fragment
size (which they would have to do anyway with greater number of
fragments, should that be desired).
On the lower level the following changes are made:
Log_event::print_base64()
remains to call encoder and store the encoded data into a cache but
now *without* doing any formatting. The latter is left for time
when the cache is copied to an output file (e.g mysqlbinlog output).
No formatting behavior is also reflected by the change in the meaning
of the last argument which specifies whether to cache the encoded data.
Rows_log_event::print_helper()
is made to invoke a specialized fragmented cache-to-file copying function
which is
copy_cache_to_file_wrapped()
that takes care of fragmenting also optionally wraps encoded
strings (fragments) into SQL stanzas.
my_b_copy_to_file()
is refactored to into my_b_copy_all_to_file(). The former function
is generalized
to accepts more a limit argument to constraint the copying and does
not reinitialize anymore the cache into reading mode.
The limit does not do any effect on the fully read cache.
main.derived_cond_pushdown: Move all 10.3 tests to the end,
trim trailing white space, and add an "End of 10.3 tests" marker.
Add --sorted_result to tests where the ordering is not deterministic.
main.win_percentile: Add --sorted_result to tests where the
ordering is no longer deterministic.
The test and also rpl_gtid_delete_domain failed on PPC64 platform
due to an incorrectly specified actual key for searching
in a gtid domain system hash. While the correct size is 32 bits
the supplied value was 8 bytes of long int size on the platform.
The problem became evident thanks to the big endiness which
cut off the *least* significant part of the value field.
Fixed with correcting a dynamic array initialization to hold
now uint32 values as well as the values extraction for
searching in the gtid domain system hash.
A new added test ensures no overflowed values are accepted
for deletion which prevents inadvertent action. Notice though
MariaDB [test]> set @@session.gtid_domain_id=(1 << 32) + 1;
MariaDB [test]> show warnings;
+---------+------+--------------------------------------------------------+
| Level | Code | Message |
+---------+------+--------------------------------------------------------+
| Warning | 1292 | Truncated incorrect gtid_domain_id value: '4294967297' |
+---------+------+--------------------------------------------------------+
MariaDB [test]> select @@session.gtid_domain_id;
+--------------------------+
| @@session.gtid_domain_id |
+--------------------------+
| 4294967295 |
+--------------------------+
This patch fills a serious flaw in the implementation of common table
expressions. Before this patch an attempt to prepare a statement from
a query with a parameter marker in a CTE that was used more than once
in the query ended up with a bogus error message. Similarly if a statement
in a stored procedure contained a CTE whose specification used a
local variables and this CTE was referred to more than once in the
statement then the server failed to execute the stored procedure returning
a bogus error message on a non-existing field.
The problems appeared due to incorrect handling of parameter markers /
local variables in CTEs that were referred more than once.
This patch fixes the problems by differentiating between the original
occurrences of a parameter marker / local variable used in the
specification of a CTE and the corresponding occurrences used
in copies of this specification. These copies are substituted
instead of non-first references to the CTE.
The idea of the fix and even some code were taken from the MySQL
implementation of the common table expressions.
Before this patch if no default database was set the server threw
an error for any table name reference that was not fully qualified by
database name. In particular it happened for table names referenced
CTE tables. This was incorrect.
The error message was thrown at the parser stage when the names referencing
different tables were not resolved yet.
Now if no default database is set and a with clause is used in the
processed statement any table reference is just supplied with a dummy
database name "*none*" at the parser stage. Later after a call
of check_dependencies_in_with_clauses() when the names for CTE tables
can be resolved error messages are thrown only for those names that
refer to non-CTE tables. This is done in open_and_process_table().
MDEV-10581 sql_mode=ORACLE: Explicit cursor FOR LOOP
MDEV-12098 sql_mode=ORACLE: Implicit cursor FOR loop
Cleanup changes:
- Removing sp_lex_cursor::m_cursor_name
- Adding sp_instr_cursor_copy_struct::m_cursor (the cursor global index)
- Fixing sp_instr_cursor_copy_struct::print() to access to the cursor
name using m_ctx and m_cursor (like other cursor related instructions do)
instead of m_cursor_name.
This change is needed to unify sp_assignment_lex and sp_cursor_lex later,
to fix this problem easier:
MDEV-16558 Parenthesized expression does not work as a lower FOR loop bound
materialized derived table/view that uses aliases is done
The problem appears when a column alias inside the materialized derived
table/view t1 definition coincides with the column name used in the
GROUP BY clause of t1. If the condition that can be pushed into t1
uses that ambiguous column name this column is determined as a column that
is used in the GROUP BY clause instead of the alias used in the projection
list of t1. That causes wrong result.
To prevent it resolve_ref_in_select_and_group() was changed.
The problem described in the bug report happened because the code
did not test check_cols(1) after fix_fields() in a few places.
Additionally, fix_fields() could be called multiple times for SP variables,
because they are all fixed at a early stage in append_for_log().
Solution:
1. Adding a few helper methods
- fix_fields_if_needed()
- fix_fields_if_needed_for_scalar()
- fix_fields_if_needed_for_bool()
- fix_fields_if_needed_for_order_by()
and using it in many cases instead of fix_fields() where
the "fixed" status is not definitely known to be "false".
2. Adding DBUG_ASSERT(!fixed) into Item_splocal*::fix_fields()
to catch double execution.
3. Adding tests.
As a good side effect, the patch removes a lot of duplicate code (~60 lines):
if (!item->fixed &&
item->fix_fields(..) &&
item->check_cols(1))
return true;
1. Adding LEX::make_item_sysvar() and reusing it
in sql_yacc.yy and sql_yacc_ora.yy.
Removing the "opt_component" rule.
2. Renaming rules to better reflect their purpose:
- keyword to keyword_ident
- keyword_sp to keyword_label
- keyword_sp_not_data_type to keyword_sp_var_and_label
Also renaming:
- sp_decl_ident_keyword to keyword_sp_decl for naming consistency
- keyword_alias to keyword_table_alias,
for consistency with ident_table_alias
- keyword_sp_data_type to keyword_data_type,
as it has nothing SP-specific.
3. Moving GLOBAL_SYM, LOCAL_SYM, SESSION_SYM from
keyword_sp_var_and_label to a separate rule keyword_sysvar_type.
We don't have system variables with these names anyway.
Adding ident_sysvar_name and using it in the grammar that needs
a system variable name instead of ident_or_text.
This removed a number of shift/reduce conflicts
between GLOBAL_SYM/LOCAL_SYM/SESSION_SYM as a variable scope and
as a variable name.
4. Moving keywords BEGIN_SYM, END (in both *.yy fiels)
and EXCEPTION_SYM (in sql_yacc_ora.yy) into a separate
rule keyword_sp_block_section, because in Oracle verb keywords
(COMMIT, DO, HANDLER, OPEN, REPAIR, ROLLBACK, SAVEPOINT, SHUTDOWN, TRUNCATE)
are good variables names and can appear in e.g. DECLARE,
while block keywords (BEGIN, END, EXCEPTION) are not good variable names
and cannot appear in DECLARE.
5. Further splitting keyword_directly_not_assignable in sql_yacc_ora.yy:
moving keyword_sp_verb_clause out. Renaming the rest of
keyword_directly_not_assignable to keyword_sp_head,
which represents keywords that can appear in optional
clauses in CREATE PROCEDURE/FUNCTION/TRIGGER.
6. Renaming keyword_sp_verb_clause to keyword_verb_clause,
as now it does not contains anything SP-specific.
As a result or #4,#5,#6, the rule keyword_directly_not_assignable
was replaced to three separate rules:
- keyword_sp_block
- keyword_sp_head
- keyword_verb_clause
Adding the same rules in sql_yacc.yy, for unification.
6. Adding keyword_sp_head and keyword_verb_clause into keyword_sp_decl.
This fixes MDEV-16244.
7. Reorganizing the rest of keyword related rules into two groups:
a. Rules defining a list of keywords and consisting of only terminal symbols:
- keyword_sp_var_not_label
- keyword_sp_head
- keyword_sp_verb_clause
- keyword_sp_block_section
- keyword_sysvar_type
b. Rules that combine the above lists into keyword places:
- keyword_table_alias
- keyword_ident
- keyword_label
- keyword_sysvar_name
- keyword_sp_decl
Rules from the group "b" use on the right side only rules
from the group "a" (with optional terminal symbols added).
Rules from the group "b" DO NOT mutually use each other any more.
This makes them easier to read (and see the difference between them).
Sorting the right sides of the group "b" keyword rules alphabetically,
for yet better readability.