This patch complements the original patch for MDEV-18896 that prevents
conversions to semi-joins in tableless selects used in INSERT statements
in post-5.5 versions of the server.
The test case was corrected as well to ensure that potential conversion
to jtbm semi-joins is also checked (the problem was that one of
the preceeding testcases in subselect_sj.test did not restore the
state of the optimizer switch leaving the 'materialization' in the state
'off' and so blocking this check).
Noticed an inconsistency in the state of select_lex::table_list used
in INSERT statements and left a comment about this.
Step 1: Removal of ORDER BY [LIMIT] from the subquery should be done
earlier and for broader class of subqueries.
The rewrite was done in Item_in_subselect::select_in_like_transformer(),
but this had problems:
- It didn't cover EXISTS subqueries
- It covered IN-subqueries, but was done after the semi-join transformation
was considered inapplicable, because ORDER BY was present.
Remaining issue:
- EXISTS->IN transformation happens before
check_and_do_in_subquery_rewrites() is called, so it is still prevented
by the present ORDER BY.
This commit is based on the work of Michal Schorm, rebased on the
earliest MariaDB version.
Th command line used to generate this diff was:
find ./ -type f \
-exec sed -i -e 's/Foundation, Inc., 59 Temple Place, Suite 330, Boston, /Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, /g' {} \; \
-exec sed -i -e 's/Foundation, Inc. 59 Temple Place.* Suite 330, Boston, /Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, /g' {} \; \
-exec sed -i -e 's/MA.*.....-1307.*USA/MA 02110-1335 USA/g' {} \; \
-exec sed -i -e 's/Foundation, Inc., 59 Temple/Foundation, Inc., 51 Franklin/g' {} \; \
-exec sed -i -e 's/Place, Suite 330, Boston, MA.*02111-1307.*USA/Street, Fifth Floor, Boston, MA 02110-1335 USA/g' {} \; \
-exec sed -i -e 's/MA.*.....-1307/MA 02110-1335/g' {} \;
With MAX_INDEXIES=64(default), key_map=Bitmap<64> is just a wrapper around
ulonglong and thus "trivial" (can be bzero-ed, or memcpy-ed, and stays
valid still)
With MAX_INDEXES=128, key_map = Bitmap<128> is not a "trivial" type
anymore. The implementation uses MY_BITMAP, and MY_BITMAP contains pointers
which make Bitmap invalid, when it is memcpy-ed/bzero-ed.
The problem in 10.4 is that there are many new key_map members, inside TABLE
or KEY, and those are often memcopied and bzeroed
The fix makes Bitmap "trivial", by inlining most of MY_BITMAP functionality.
pointers/heap allocations are not used anymore.
The bug appears because not all conditions are found to be knowingly
true or false in WHERE after HAVING pushdown optimization.
Impossible WHERE can be found much earlier compared with how it is done now.
To fix it and_new_conditions_to_optimized_cond() is changed.
This bug is caused by pushdown from HAVING into WHERE.
It appears because condition that is pushed wasn't fixed.
It is also discovered that condition pushdown from HAVING into
WHERE is done wrong. There is no need to build clones for some
conditions that can be pushed. They can be simply moved from HAVING
into WHERE without cloning.
build_pushable_cond_for_having_pushdown(),
remove_pushed_top_conjuncts_for_having() methods are changed.
It is found that there is no transformation made for fields of
pushed condition.
field_transformer_for_having_pushdown transformer is added.
New tests are added. Some comments are changed.
If an IN-subquery is used in a table-less select the current code
should never consider it as candidate for semi-join optimizations.
Yet the function check_and_do_in_subquery_rewrites() improperly
checked the property "to be a table-less select". As a result
such select in IN subquery was used in INSERT .. SELECT then
the IN subquery by mistake was registered as a semi-join subquery
and convert_subq_to_sj() was called for it. However the code of
this function does not assume that the parent select of the subquery
could be a table-less select.
Optimized the code that removed multiple equalities pushed from HAVING
into WHERE. Now this removal is postponed until all multiple equalities
are eliminated in substitute_for_best_equal_field().
Condition can be pushed from the HAVING clause into the WHERE clause
if it depends only on the fields that are used in the GROUP BY list
or depends on the fields that are equal to grouping fields.
Aggregate functions can't be pushed down.
How the pushdown is performed on the example:
SELECT t1.a,MAX(t1.b)
FROM t1
GROUP BY t1.a
HAVING (t1.a>2) AND (MAX(c)>12);
=>
SELECT t1.a,MAX(t1.b)
FROM t1
WHERE (t1.a>2)
GROUP BY t1.a
HAVING (MAX(c)>12);
The implementation scheme:
1. Extract the most restrictive condition cond from the HAVING clause of
the select that depends only on the fields that are used in the GROUP BY
list of the select (directly or indirectly through equalities)
2. Save cond as a condition that can be pushed into the WHERE clause
of the select
3. Remove cond from the HAVING clause if it is possible
The optimization is implemented in the function
st_select_lex::pushdown_from_having_into_where().
New test file having_cond_pushdown.test is created.
This task involves the implementation for the optimizer trace.
This feature produces a trace for any SELECT/UPDATE/DELETE/,
which contains information about decisions taken by the optimizer during
the optimization phase (choice of table access method, various costs,
transformations, etc). This feature would help to tell why some decisions were
taken by the optimizer and why some were rejected.
Trace is session-local, controlled by the @@optimizer_trace variable.
To enable optimizer trace we need to write:
set @@optimizer_trace variable= 'enabled=on';
To display the trace one can run:
SELECT trace FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE;
This task also involves:
MDEV-18489: Limit the memory used by the optimizer trace
introduces a switch optimizer_trace_max_mem_size which limits
the memory used by the optimizer trace. This was implemented by
Sergei Petrunia.
The function and_new_conditions_to_optimized_cond() incorrectly handled
the WHERE conditions with one multiple equality and one IN subquery predicate
that could be converted into a jtbm semi-join. This could cause crashes.
The fix code was prepared by Galina Shalygina.
This was a bug in the code of MDEV-12387 "Push conditions into materialized
subqueries". The bug manifested itself in rather rare situations. An
affected query must contain IN subquery predicate whose left operand
was an outer field of a mergeable derived table or view and right operand
was a materialized subquery.
The erroneous code in fact stripped off the Item_direct_ref wrapper from
the left operand of the IN subquery predicate when building equalities
produced by the conversion of the predicate into a semi-join. As a result
the left operand was not considered as an outer reference anymore and
used_tables() was calculated incorrectly. This caused a crash in the
function optimize_keyuse().
The problem appears because of the pushdown of a non-pushable condition 'cond'
into the materialized derived table/view. To prevent pushdown a map of
tables that are used in 'cond' should be updated. This call is missing
because of the MDEV-12387 changes. The call is added in the
setup_jtbm_semi_joins() method.
failed
The bug appeared as in MDEV-12387 setup_jtbm_semi_joins() procedure had been
devided into two functions, one called before optimization of WHERE clause
and another after this optimization. When the second function was called for
a degenerated jtbm semi join equalities connecting the subselect and
the parent select were created but invocation of fix_fields() for these
equalities was missing.
In this case we are setting the field Item_func_eq::in_eqaulity_no for the semi-join equalities.
This helps us to remove these equalites as the inner tables are not available during parent select execution
while the outer tables are not available during materialization phase.
We only have it set for the equalites for the fields involved with the IN subquery
and reset it for the equalities which do not belong to the IN subquery.
For example in case of nested IN subqueries:
SELECT t1.a FROM t1 WHERE t1.a IN
(SELECT t2.a FROM t2 where t2.b IN
(select t3.b from t3 where t3.c=27 ))
there are two equalites involving the fields of the IN subquery
1) t2.b = t3.b : the field Item_func_eq::in_eqaulity_no is set when we merge the grandchild select into the child select
2) t1.a = t2.a : the field Item_func_eq::in_eqaulity_no is set when we merge the child select into the parent select
But when we perform case 2) we should ensure that we reset the equalities in the child's WHERE clause.
with join_cache_level>2
During muliple equality propagation for a query in which we have an IN subquery, the items in the select list of the
subquery may not be part of the multiple equality because there might be another occurence of the same field in the
where clause of the subquery.
So we keyuse_is_valid_for_access_in_chosen_plan function which expects the items in the select list of the subquery to
be same to the ones in the multiple equality (through these multiple equalities we create keyuse array).
The solution would be that we expect the same field not the same Item because when we have SEMI JOIN MATERIALIZATION SCAN,
we use copy back technique to copies back the materialised table fields to the original fields of the base tables.
The problem described in the bug report happened because the code
did not test check_cols(1) after fix_fields() in a few places.
Additionally, fix_fields() could be called multiple times for SP variables,
because they are all fixed at a early stage in append_for_log().
Solution:
1. Adding a few helper methods
- fix_fields_if_needed()
- fix_fields_if_needed_for_scalar()
- fix_fields_if_needed_for_bool()
- fix_fields_if_needed_for_order_by()
and using it in many cases instead of fix_fields() where
the "fixed" status is not definitely known to be "false".
2. Adding DBUG_ASSERT(!fixed) into Item_splocal*::fix_fields()
to catch double execution.
3. Adding tests.
As a good side effect, the patch removes a lot of duplicate code (~60 lines):
if (!item->fixed &&
item->fix_fields(..) &&
item->check_cols(1))
return true;