mode.
When a new DATE/DATETIME field without default value is being added by the
ALTER TABLE the '0000-00-00' value is used as the default one. But it wasn't
checked whether such value was allowed by the set sql mode. Due to this
'0000-00-00' values was allowed for DATE/DATETIME fields even in the
NO_ZERO_DATE mode.
Now the mysql_alter_table() function checks whether the '0000-00-00' value
is allowed for DATE/DATETIME fields by the set sql mode.
The new error_if_not_empty flag is used in the mysql_alter_table() function
to indicate that it should abort if the table being altered isn't empty.
The new new_datetime_field field is used in the mysql_alter_table() function
for error throwing purposes.
The new error_if_not_empty parameter is added to the copy_data_between_tables()
function to indicate the it should return error if the source table isn't empty.
my_decimal in some cases can contain more decimal digits than
is officially supported (DECIMAL_MAX_PRECISION), so we need to
prepare bigger buffer for the resulting string.
Problem: we may get syntactically incorrect queries in the binary log
if we use a string value user variable executing a PS which
contains '... limit ?' clause, e.g.
prepare s from "select 1 limit ?";
set @a='qwe'; execute s using @a;
Fix: raise an error in such cases.
is involved.
The Arg_comparator::compare_datetime() comparator caches its arguments if
they are constants i.e. const_item() returns true. The
Item_func_get_user_var::const_item() returns true or false based on
the current query_id and the query_id where the variable was created.
Thus even if a query can change its value its const_item() still will return
true. All this leads to a wrong comparison result when an object of the
Item_func_get_user_var class is involved.
Now the Arg_comparator::can_compare_as_dates() and the
get_datetime_value() functions never cache result of the GET_USER_VAR()
function (the Item_func_get_user_var class).
Conversion errors when constructing the condition for an
IN predicates were treated as if the affected column contains
NULL. If such a IN predicate is inside NOT we get wrong
results.
Corrected the handling of conversion errors in an IN predicate
that is resolved by unique_subquery (through
subselect_uniquesubquery_engine).
Made year 2000 handling more uniform
Removed year 2000 handling out from calc_days()
The above removes some bugs in date/datetimes with year between 0 and 200
Now we get a note when we insert a datetime value into a date column
For default values to CREATE, don't give errors for warning level NOTE
Fixed some compiler failures
Added library ws2_32 for windows compilation (needed if we want to compile with IOCP support)
Removed duplicate typedef TIME and replaced it with MYSQL_TIME
Better (more complete) fix for: Bug#21103 "DATE column not compared as DATE"
Fixed properly Bug#18997 "DATE_ADD and DATE_SUB perform year2K autoconversion magic on 4-digit year value"
Fixed Bug#23093 "Implicit conversion of 9912101 to date does not match cast(9912101 as date)"
- Since isinf() portability across various platforms and
compilers is a complicated question, we should not use
it directly. Instead, the my_isinf() macro should be used,
which is defined as an alias to the system-defined isinf()
if it is safe to use, or a workaround implementation otherwise
Bug#21483 "Server abort or deadlock on INSERT DELAYED with another
implicit insert"
Also fixes and adds test cases for bugs:
20497 "Trigger with INSERT DELAYED causes Error 1165"
21714 "Wrong NEW.value and server abort on INSERT DELAYED to a
table with a trigger".
Post-review fixes.
Problem:
In MySQL INSERT DELAYED is a way to pipe all inserts into a
given table through a dedicated thread. This is necessary for
simplistic storage engines like MyISAM, which do not have internal
concurrency control or threading and thus can not
achieve efficient INSERT throughput without support from SQL layer.
DELAYED INSERT works as follows:
For every distinct table, which can accept DELAYED inserts and has
pending data to insert, a dedicated thread is created to write data
to disk. All user connection threads that attempt to
delayed-insert into this table interact with the dedicated thread in
producer/consumer fashion: all records to-be inserted are pushed
into a queue of the dedicated thread, which fetches the records and
writes them.
In this design, client connection threads never open or lock
the delayed insert table.
This functionality was introduced in version 3.23 and does not take
into account existence of triggers, views, or pre-locking.
E.g. if INSERT DELAYED is called from a stored function, which,
in turn, is called from another stored function that uses the delayed
table, a deadlock can occur, because delayed locking by-passes
pre-locking. Besides:
* the delayed thread works directly with the subject table through
the storage engine API and does not invoke triggers
* even if it was patched to invoke triggers, if triggers,
in turn, used other tables, the delayed thread would
have to open and lock involved tables (use pre-locking).
* even if it was patched to use pre-locking, without deadlock
detection the delayed thread could easily lock out user
connection threads in case when the same table is used both
in a trigger and on the right side of the insert query:
the delayed thread would not release locks until all inserts
are complete, and user connection can not complete inserts
without having locks on the tables used on the right side of the
query.
Solution:
These considerations suggest two general alternatives for the
future of INSERT DELAYED:
* it is considered a full-fledged alternative to normal INSERT
* it is regarded as an optimisation that is only relevant
for simplistic engines.
Since we missed our chance to provide complete support of new
features when 5.0 was in development, the first alternative
currently renders infeasible.
However, even the second alternative, which is to detect
new features and convert DELAYED insert into a normal insert,
is not easy to implement.
The catch-22 is that we don't know if the subject table has triggers
or is a view before we open it, and we only open it in the
delayed thread. We don't know if the query involves pre-locking
until we have opened all tables, and we always first create
the delayed thread, and only then open the remaining tables.
This patch detects the problematic scenarios and converts
DELAYED INSERT to a normal INSERT using the following approach:
* if the statement is executed under pre-locking (e.g. from
within a stored function or trigger) or the right
side may require pre-locking, we detect the situation
before creating a delayed insert thread and convert the statement
to a conventional INSERT.
* if the subject table is a view or has triggers, we shutdown
the delayed thread and convert the statement to a conventional
INSERT.
function.
A wrong condition was used to check that the
Arg_comparator::can_compare_as_dates() function calculated the value of the
string constant. When comparing a non-const STRING function with a constant
DATETIME function it leads to saving an arbitrary value as a cached value of
the DATETIME function.
Now the Arg_comparator::set_cmp_func() function initializes the const_value
variable to the impossible DATETIME value (-1) and this const_value is
cached only if it was changed by the Arg_comparator::can_compare_as_dates()
function.
to NULL
For queries of the form SELECT MIN(key_part_k) FROM t1
WHERE key_part_1 = const and ... and key_part_k-1 = const,
the opt_sum_query optimization tries to
use an index to substitute MIN/MAX functions with their values according
to the following rules:
1) Insert the minimum non-null values where the WHERE clause still matches, or
3) A row of nulls
However, the correct semantics requires that there is a third case 2)
such that a NULL value is substituted if there are only NULL values for
key_part_k.
The patch modifies opt_sum_query() to handle this missing case.
for a query over an empty table right after its creation.
The crash is the result of an attempt made by JOIN::optimize to evaluate
the WHERE condition when no records have been actually read.
The added test case can reproduce the crash only with InnoDB tables and
only with 5.0.x.
statement from a UNION query with ORDER BY an expression containing
RAND().
The crash happened because the global order by list in the union query
was not re-initialized for execution.
(Local order by lists were re-initialized though).
a crash when the left operand of the predicate is evaluated to NULL.
It happens when the rows from the inner tables (tables from the subquery)
are accessed by index methods with key values obtained by evaluation of
the left operand of the subquery predicate. When this predicate is
evaluated to NULL an alternative access with full table scan is used
to check whether the result set returned by the subquery is empty or not.
The crash was due to the fact the info about the access methods used for
regular key values was not properly restored after a switch back from the
full scan access method had occurred.
The patch restores this info properly.
The same problem existed for queries with IN subquery predicates if they
were used not at the top level of the queries.
database.
If a user has a right to update anything in the current database then the
access was granted and further checks of access rights for underlying tables
wasn't done correctly. The check is done before a view is opened and thus no
check of access rights for underlying tables can be carried out.
This allows a user to update through a view a table from another database for
which he hasn't enough rights.
Now the mysql_update() and the mysql_test_update() functions are forces
re-checking of access rights after a view is opened.
Bug #20662 "Infinite loop in CREATE TABLE IF NOT EXISTS ... SELECT
with locked tables"
Bug #20903 "Crash when using CREATE TABLE .. SELECT and triggers"
Bug #24738 "CREATE TABLE ... SELECT is not isolated properly"
Bug #24508 "Inconsistent results of CREATE TABLE ... SELECT when
temporary table exists"
Deadlock occured when one tried to execute CREATE TABLE IF NOT
EXISTS ... SELECT statement under LOCK TABLES which held
read lock on target table.
Attempt to execute the same statement for already existing
target table with triggers caused server crashes.
Also concurrent execution of CREATE TABLE ... SELECT statement
and other statements involving target table suffered from
various races (some of which might've led to deadlocks).
Finally, attempt to execute CREATE TABLE ... SELECT in case
when a temporary table with same name was already present
led to the insertion of data into this temporary table and
creation of empty non-temporary table.
All above problems stemmed from the old implementation of CREATE
TABLE ... SELECT in which we created, opened and locked target
table without any special protection in a separate step and not
with the rest of tables used by this statement.
This underminded deadlock-avoidance approach used in server
and created window for races. It also excluded target table
from prelocking causing problems with trigger execution.
The patch solves these problems by implementing new approach to
handling of CREATE TABLE ... SELECT for base tables.
We try to open and lock table to be created at the same time as
the rest of tables used by this statement. If such table does not
exist at this moment we create and place in the table cache special
placeholder for it which prevents its creation or any other usage
by other threads.
We still use old approach for creation of temporary tables.
Also note that we decided to postpone introduction of some tests
for concurrent behaviour of CREATE TABLE ... SELECT till 5.1.
The main reason for this is absence in 5.0 ability to set @@debug
variable at runtime, which can be circumvented only by using several
test files with individual .opt files. Since the latter is likely
to slowdown test-suite unnecessary we chose not to push this tests
into 5.0, but run them manually for this version and later push
their optimized version into 5.1
When using GROUP_CONCAT with ORDER BY, a tree is used for the sorting, as
opposed to normal nested loops join used when there is no ORDER BY.
The tree traversal that generates the result counts the lines that have been
cut down. (as they get cut down to the field's max_size)
But the check of that count was before the tree traversal, so no
warning was generated if the output is truncated.
Fixed by moving the check to after the tree traversal.
Bug occurs in INSERT IGNORE ... SELECT ... ON DUPLICATE KEY UPDATE
statements, when SELECT returns duplicated values and UPDATE clause
tries to assign NULL values to NOT NULL fields.
NOTE: By current design MySQL server treats INSERT IGNORE ... ON
DUPLICATE statements as INSERT ... ON DUPLICATE with update of
duplicated records, but MySQL manual lacks this information.
After this fix such behaviour becomes legalized.
The write_record() function was returning error values even within
INSERT IGNORE, because ignore_errors parameter of
the fill_record_n_invoke_before_triggers() function call was
always set to FALSE. FALSE is replaced by info->ignore.
TIMESTAMP field when no value has been provided.
The LOAD DATA sets the current time in the TIMESTAMP field with
CURRENT_TIMESTAMP default value when the field is detected as a null.
But when the LOAD DATA command loads data from a file that doesn't contain
enough data for all fields then the rest of fields are simply set to null
without any check. This leads to no value being inserted to such TIMESTAMP
field.
Now the read_sep_field() and the read_fixed_length() functions set current
time to the TIMESTAMP field with CURRENT_TIMESTAMP default value in all cases
when a NULL value is loaded to the field.
- Queries in the query cache are identified by the individual
characters in the query statement, the current database and
the current environment expressed as a set of system variable
flags.
- Since the set of environment flags didn't properly describe the
current environment unexpected results were returned from the
query cache.
- Query cache is now cleared when the variable ft_boolean_syntax is
updated.
- An identification flag for the variable default_week_format is
added to the query cache record.
Thanks to Martin Friebe who has supplied significant parts of this patch.
This patch corrects a bug involving a LOAD DATA INFILE operation on a
transactional table. It corrects a problem in the error handler moving
the transactional table check and autocommit_or_rollback operation to the
end of the error handler. An additional test case was added to detect this
condition.
This bug affects multi-row INSERT ... ON DUPLICATE into table
with PRIMARY KEY of AUTO_INCREMENT field and some additional UNIQUE indices.
If the first row in multi-row INSERT contains duplicated values of UNIQUE
indices, then following rows of multi-row INSERT (with either duplicated or
unique key field values) may me applied to _arbitrary_ records of table as
updates.
This bug was introduced in 5.0. Related code was widely rewritten in 5.1, and
5.1 is already free of this problem. 4.1 was not affected too.
When updating the row during INSERT ON DUPLICATE KEY UPDATE, we called
restore_auto_increment(), which set next_insert_id back to 0, but we
forgot to set clear_next_insert_id back to 0.
restore_auto_increment() function has been fixed.
The IN function was comparing DATE/DATETIME values either as ints or as
strings. Both methods have their disadvantages and may lead to a wrong
result.
Now IN function checks whether all of its arguments has the STRING result
types and at least one of them is a DATE/DATETIME item. If so it uses either
an object of the in_datetime class or an object of the cmp_item_datetime
class to perform its work. If the IN() function arguments are rows then
row columns are checked whether the DATE/DATETIME comparator should be used
to compare them.
The in_datetime class is used to find occurence of the item to be checked
in the vector of the constant DATE/DATETIME values. The cmp_item_datetime
class is used to compare items one by one in the DATE/DATETIME context.
Both classes obtain values from items with help of the get_datetime_value()
function and cache the left item if it is a constant one.
- In some cases, flow control optimization implemented in sp::optimize
removes hreturn instructions, causing SQL exception handlers to:
* never return
* execute wrong logic
- This patch overrides default short cut optimization on hreturn instructions
to avoid this problem.
The LEAST/GREATEST functions compared DATE/DATETIME values as
strings which in some cases could lead to a wrong result.
A new member function called cmp_datetimes() is added to the
Item_func_min_max class. It compares arguments in DATETIME context
and returns index of the least/greatest argument.
The Item_func_min_max::fix_length_and_dec() function now detects when
arguments should be compared in DATETIME context and sets the newly
added flag compare_as_dates. It indicates that the cmp_datetimes() function
should be called to get a correct result.
Item_func_min_max::val_xxx() methods are corrected to call the
cmp_datetimes() function when needed.
Objects of the Item_splocal class now stores and reports correct original
field type.
When checking for applicability of join cache
we must disable its usage only if there is no
temp table in use.
When a temp table is used we can use join
cache (and it will not make the result-set
unordered) to fill the temp table. The filesort()
operation is then applied to the data in the temp
table and hence is not affected by join cache
usage.
Fixed by narrowing the condition for disabling
join cache to exclude the case where temp table
is used.
Non-correlated scalar subqueries may get executed
in EXPLAIN at the optimization phase if they are
part of a right hand sargable expression.
If the scalar subquery uses a temp table to
materialize its results it will replace the
subquery structure from the parser with a simple
select from the materialization table.
As a result the EXPLAIN will crash as the
temporary materialization table is not to be shown
in EXPLAIN at all.
Fixed by preserving the original query structure
right after calling optimize() for scalar subqueries
with temp tables executed during EXPLAIN.
The generic string to int conversion was used by the Item_func_signed and
the Item_func_unsigned classes to convert DATE/DATETIME values to the
SIGNED/UNSIGNED type. But this conversion produces wrong results for such
values.
Now if the item which result has to be converted can return its result as
longlong then the item->val_int() method is used to allow the item to carry
out the conversion itself and return the correct result.
This condition is checked in the Item_func_signed::val_int() and the
Item_func_unsigned::val_int() functions.
'not exists' optimization is applied.
In fact 'not exists' optimization did not work anymore after the patch
introducing the evaluate_join_record function had been applied.
Corrected the evaluate_join_record function to respect the 'not_exists'
optimization.
some rollup rows (rows with NULLs for grouping attributes) if GROUP BY
list contained constant expressions.
This happened because the results of constant expressions were not put
in the temporary table used for duplicate elimination. In fact a constant
item from the GROUP BY list of a ROLLUP query can be replaced for an
Item_null_result object when a rollup row is produced .
Now the JOIN::rollup_init function wraps any constant item referenced in
the GROYP BY list of a ROLLUP query into an Item_func object of a special
class that is never detected as constant item. This ensures creation of
fields for such constant items in temporary tables and guarantees right
results when the result of the rollup operation first has to be written
into a temporary table, e.g. in the cases when duplicate elimination is
required.
INSERT...ON DUPLICATE KEY UPDATE may cause error 1032:
"Can't find record in ..." if we are inserting into
InnoDB table unique index of partial key with
underlying UTF-8 string field.
This error occurs because INSERT...ON DUPLICATE uses a wrong
procedure to copy string fields of multi-byte character sets
for index search.
- unsigned flag was not handled correctly for a number of mathematical funcions, which led to incorrect results
- passing large values as the number of decimals to ROUND() resulted in incorrect results and even server crashes in some cases
- reverted the fix and the testcase for bug #10083 as it violates the manual
- fixed some testcases which relied on broken ROUND() behavior
on a BLACKHOLE table
Using INSERT DELAYED on BLACKHOLE tables could lead to server
crash.
This happens because delayed thread wants to upgrade a lock,
but BLACKHOLE tables do not have locks at all.
This patch rejects attempts to use INSERT DELAYED on MERGE
tables.
Before this fix, the parser would sometime change where a token starts by
altering Lex_input_string::tok_start, which later confused the code in
sql_yacc.yy that needs to capture the source code of a SQL statement,
like to represent the body of a stored procedure.
This line of code in sql_lex.cc :
case MY_LEX_USER_VARIABLE_DELIMITER:
lip->tok_start= lip->ptr; // Skip first `
would <skip the first back quote> ... and cause the bug reported.
In general, the responsibility of sql_lex.cc is to *find* where token are
in the SQL text, but is *not* to make up fake or incomplete tokens.
With a quoted label like `my_label`, the token starts on the first quote.
Extracting the token value should not change that (it did).
With this fix, the lexical analysis has been cleaned up to not change
lip->tok_start (in the case found for this bug).
The functions get_token() and get_quoted_token() now have an extra
parameters, used when some characters from the beginning of the token need
to be skipped when extracting a token value, like when extracting 'AB' from
'0xAB', for example, for a HEX_NUM token.
This exposed a bad assumption in Item_hex_string and Item_bin_string,
which has been fixed:
The assumption was that the string given, 'AB', was in fact preceded in
memory by '0x', which might be false (it can be preceded by "x'" and
followed by "'" -- or not be preceded by valid memory at all)
If a name is needed for Item_hex_string or Item_bin_string, the name is
taken from the original and true source code ('0xAB'), and assigned in
the select_item rule, instead of relying on assumptions related to how
memory is used.
The BETWEEN function was comparing DATE/DATETIME values either as ints or as
strings. Both methods have their disadvantages and may lead to a wrong
result.
Now BETWEEN function checks whether all of its arguments has the STRING result
types and at least one of them is a DATE/DATETIME item. If so it sets up
two Arg_comparator obects to compare with the compare_datetime() comparator
and uses them to compare such items.
Added two Arg_comparator object members and one flag to the
Item_func_between class for the correct DATE/DATETIME comparison.
The Item_func_between::fix_length_and_dec() function now detects whether
it's used for DATE/DATETIME comparison and sets up newly added Arg_comparator
objects to do this.
The Item_func_between::val_int() now uses Arg_comparator objects to perform
correct DATE/DATETIME comparison.
The owner variable of the Arg_comparator class now can be set to NULL if the
caller wants to handle NULL values by itself.
Now the Item_date_add_interval::get_date() function ajusts cached_field type according to the detected type.
DATE and DATETIME can be compared either as strings or as int. Both
methods have their disadvantages. Strings can contain valid DATETIME value
but have insignificant zeros omitted thus became non-comparable with
other DATETIME strings. The comparison as int usually will require conversion
from the string representation and the automatic conversion in most cases is
carried out in a wrong way thus producing wrong comparison result. Another
problem occurs when one tries to compare DATE field with a DATETIME constant.
The constant is converted to DATE losing its precision i.e. losing time part.
This fix addresses the problems described above by adding a special
DATE/DATETIME comparator. The comparator correctly converts DATE/DATETIME
string values to int when it's necessary, adds zero time part (00:00:00)
to DATE values to compare them correctly to DATETIME values. Due to correct
conversion malformed DATETIME string values are correctly compared to other
DATE/DATETIME values.
As of this patch a DATE value equals to DATETIME value with zero time part.
For example '2001-01-01' equals to '2001-01-01 00:00:00'.
The compare_datetime() function is added to the Arg_comparator class.
It implements the correct comparator for DATE/DATETIME values.
Two supplementary functions called get_date_from_str() and get_datetime_value()
are added. The first one extracts DATE/DATETIME value from a string and the
second one retrieves the correct DATE/DATETIME value from an item.
The new Arg_comparator::can_compare_as_dates() function is added and used
to check whether two given items can be compared by the compare_datetime()
comparator.
Two caching variables were added to the Arg_comparator class to speedup the
DATE/DATETIME comparison.
One more store() method was added to the Item_cache_int class to cache int
values.
The new is_datetime() function was added to the Item class. It indicates
whether the item returns a DATE/DATETIME value.
Validity checks for nested set functions
were not taking into account that the enclosed
set function may be on a nest level that is
lower than the nest level of the enclosing set
function.
Fixed by :
- propagating max_sum_func_level
up the enclosing set functions chain.
- updating the max_sum_func_level of the
enclosing set function when the enclosed set
function is aggregated above or on the same
nest level of as the level of the enclosing
set function.
- updating the max_arg_level of the enclosing
set function on a reference that refers to
an item above or on the same nest level
as the level of the enclosing set function.
- Treating both Item_field and Item_ref as possibly
referencing items from outer nest levels.
INSERT into InnoDB table may cause "ERROR 1062 (23000): Duplicate entry..."
errors or lost records after multi-row INSERT of the form:
"INSERT INTO t (id...) VALUES (NULL...) ON DUPLICATE KEY UPDATE id=VALUES(id)",
where "id" is an AUTO_INCREMENT column.
It happens because InnoDB handler forgets to save next insert id after
updating of auto_increment column with new values. As result of that
last insert id stored inside InnoDB dictionary tables differs from it's
cached thd->next_insert_id value.
When fields are inserted instead of * in the select list they were not marked
for check for the ONLY_FULL_GROUP_BY mode.
The Field_iterator_table::create_item() function now marks newly created
items for check when in the ONLY_FULL_GROUP_BY mode.
The setup_wild() and the insert_fields() functions now maintain the
cur_pos_in_select_list counter for the ONLY_FULL_GROUP_BY mode.
The issue found with bug 25411 is due to the function skip_rear_comments()
which damages the source code while implementing a work around.
The root cause of the problem is in the lexical analyser, which does not
process special comments properly.
For special comments like :
[1] aaa /*!50000 bbb */ ccc
since 5.0 is a version older that the current code, the parser is in lining
the content of the special comment, so that the query to process is
[2] aaa bbb ccc
However, the text of the query captured when processing a stored procedure,
stored function or trigger (or event in 5.1), can be after rebuilding it:
[3] aaa bbb */ ccc
which is wrong.
To fix bug 25411 properly, the lexical analyser needs to return [2] when
in lining special comments.
In order to implement this, some preliminary cleanup is required in the code,
which is implemented by this patch.
Before this change, the structure named LEX (or st_lex) contains attributes
that belong to lexical analysis, as well as attributes that represents the
abstract syntax tree (AST) of a statement.
Creating a new LEX structure for each statements (which makes sense for the
AST part) also re-initialized the lexical analysis phase each time, which
is conceptually wrong.
With this patch, the previous st_lex structure has been split in two:
- st_lex represents the Abstract Syntax Tree for a statement. The name "lex"
has not been changed to avoid a bigger impact in the code base.
- class lex_input_stream represents the internal state of the lexical
analyser, which by definition should *not* be reinitialized when parsing
multiple statements from the same input stream.
This change is a pre-requisite for bug 25411, since the implementation of
lex_input_stream will later improve to deal properly with special comments,
and this processing can not be done with the current implementation of
sp_head::reset_lex and sp_head::restore_lex, which interfere with the lexer.
This change set alone does not fix bug 25411.
- Added script to generate application specific manifest.
- Added new CMake MACRO to add customer build events which will first
generate a manifest and then embeds that manifest into an executable.
In multi_update::send_data(), the counter of matched rows was not correctly incremented, when during insertion of a new row to a temporay table it had to be converted from HEAP to MyISAM.
This fix changes the logic to increment the counter of matched rows in the following cases:
1. If the error returned from write_row() is zero.
2. If the error returned from write_row() is non-zero, is neither HA_ERR_FOUND_DUPP_KEY nor HA_ERR_FOUND_DUPP_UNIQUE, and a call to create_myisam_from_heap() succeeds.
This bug was intruduced by the fix for bug#17212 (in 4.1). It is not
ok to call test_if_skip_sort_order since this function will
alter the execution plan. By contract it is not ok to call
test_if_skip_sort_order in this context.
This bug appears only in the case when the optimizer has chosen
an index for accessing a particular table but finds a covering
index that enables it to skip ORDER BY. This happens in
test_if_skip_sort_order.
When merging views into the enclosing statement
the ORDER BY clause of the view is merged to the
parent's ORDER BY clause.
However when the VIEW is merged into an UNION
branch the ORDER BY should be ignored.
Use of ORDER BY for individual SELECT statements
implies nothing about the order in which the rows
appear in the final result because UNION by default
produces unordered set of rows.
Fixed by ignoring the ORDER BY clause from the merge
view when expanded in an UNION branch.
Enable 'mysys' build if target 'Enterprise'
item_subselect.h:
Fixed bug #27870. The bug that causes crashes manifests itself at some
conditions when executing an equijoin query with WHERE condition
containing a subquery predicate of the form join_attr NOT IN (SELECT ...).
They can drop table after table names list creation and before table opening.
We open non existing table and get ER_NO_SUCH_TABLE error.
In this case we do not store the record into I_S table and clear error.
NULL MERGE: this ChangeSet will be null merged into mysql-5.1
Fixes:
- Bug #26662: mysqld assertion when creating temporary (InnoDB) table on a tmpfs filesystem
Fix by not open(2)ing with O_DIRECT but rather calling fcntl(2) to set
this flag immediately after open(2)ing. This way an error caused by
O_DIRECT not being supported can easily be ignored.
- Bug #23313: AUTO_INCREMENT=# not reported back for InnoDB tables
- Bug #21404: AUTO_INCREMENT value reset when Adding FKEY (or ALTER?)
Report the current value of the AUTO_INCREMENT counter to MySQL.
- Improve mysql_upgrade and add comments describing it's logic
- Don't look for mysql and mysqlcheck randomly, use dir where mysql_upgrade
was started from
- Don't look for mysql_fix_privilege_tables.sql randomly, compile
in the mysql_fix_privilege_tables.sql file and use that to upgrade
the system tables of MySQL
- Check for any unexpected error returned from runnning the mysql_fix_privilege_tables SQL
- Fix bug#26639, bug#24248 and bug#25405
conditions when executing an equijoin query with WHERE condition
containing a subquery predicate of the form join_attr NOT IN (SELECT ...).
To resolve a problem of the correct evaluation of the expression
attr NOT IN (SELECT ...)
an array of guards is created to make it possible to filter out some
predicates of the EXISTS subquery into which the original subquery
predicate is transformed, in the cases when a takes the NULL value.
If attr is defined as a field that cannot be NULL than such an array
is not needed and is not created.
However if the field a occurred also an an equijoin predicate t2.a=t1.b
and table t1 is accessed before table t2 then it may happen that the
the EXISTS subquery is pushed down to the condition evaluated just after
table t1 has been accessed. In this case any occurrence of t2.a is
substituted for t1.b. When t1.b takes the value of NULL an attempt is
made to turn on the corresponding guard. This action caused a crash as
no guard array had been created.
Now the code of Item_in_subselect::set_cond_guard_var checks that the guard
array has been created before setting a guard variable on. Otherwise the
method does nothing. It cannot results in returning a row that could be
rejected as the condition t2.a=t1.b will be checked later anyway.