STATUS OF ROLLBACKED TRANSACTION" and bug #17054007 - "TRANSACTION
IS NOT FULLY ROLLED BACK IN CASE OF INNODB DEADLOCK".
The problem in the first bug report was that although deadlock involving
metadata locks was reported using the same error code and message as InnoDB
deadlock it didn't rollback transaction like the latter. This caused
confusion to users as in some cases after ER_LOCK_DEADLOCK transaction
could have been restarted immediately and in some cases rollback was
required.
The problem in the second bug report was that although InnoDB deadlock
caused transaction rollback in all storage engines it didn't cause release
of metadata locks. So concurrent DDL on the tables used in transaction was
blocked until implicit or explicit COMMIT or ROLLBACK was issued in the
connection which got InnoDB deadlock.
The former issue has stemmed from the fact that when support for detection
and reporting metadata locks deadlocks was added we erroneously assumed
that InnoDB doesn't rollback transaction on deadlock but only last statement
(while this is what happens on InnoDB lock timeout actually) and so didn't
implement rollback of transactions on MDL deadlocks.
The latter issue was caused by the fact that rollback of transaction due
to deadlock is carried out by setting THD::transaction_rollback_request
flag at the point where deadlock is detected and performing rollback
inside of trans_rollback_stmt() call when this flag is set. And
trans_rollback_stmt() is not aware of MDL locks, so no MDL locks are
released.
This patch solves these two problems in the following way:
- In case when MDL deadlock is detect transaction rollback is requested
by setting THD::transaction_rollback_request flag.
- Code performing rollback of transaction if THD::transaction_rollback_request
is moved out from trans_rollback_stmt(). Now we handle rollback request
on the same level as we call trans_rollback_stmt() and release statement/
transaction MDL locks.
The problem is a shift operation that is not 64-bit safe.
The consequence is that used tables information for a join with 32 tables
or more will be incorrect.
Fixed by adding a type cast in Item_sum::update_used_tables().
Also used the opportunity to fix some other potential bugs by adding an
explicit type-cast to an integer in a left-shift operation.
Some of them were quite harmless, but was fixed in order to get the same
signed-ness as the other operand of the operation it was used in.
sql/item_cmpfunc.cc
Adjusted signed-ness for some integers in left-shift.
sql/item_subselect.cc
Added type-cast to nesting_map (which is a 32/64 bit type, so
potential bug for deeply nested queries).
sql/item_sum.cc
Added type-cast to nesting_map (32/64-bit type) and table_map
(64-bit type).
sql/opt_range.cc
Added type-cast to ulonglong (which is a 64-bit type).
sql/sql_base.cc
Added type-cast to nesting_map (which is a 32/64-bit type).
sql/sql_select.cc
Added type-cast to nesting_map (32/64-bit type) and key_part_map
(64-bit type).
sql/strfunc.cc
Changed type-cast from longlong to ulonglong, to preserve signed-ness.
ROBUST AGAINST BUGS IN CALLERS".
Both MDL subsystems and Table Definition Cache code assume
that callers ensure that names of objects passed to them are
not longer than NAME_LEN bytes. Unfortunately due to bugs in
callers this assumption might be broken in some cases. As
result we get nasty bugs causing buffer overruns when we
construct MDL key or TDC key from object names.
This patch makes MDL and TDC code more robust against such
bugs by ensuring that we always checking size of result
buffer when constructing MDL and TDC keys. This doesn't
free its callers from ensuring that both db and table names
are shorter than NAME_LEN bytes. But at least these steps
prevents buffer overruns in case of bug in caller, replacing
them with less harmful behavior.
This is 5.5-only version of patch.
Changed code of MDL_key::mdl_key_init() to take into account
size of buffer for the key.
Introduced new version of create_table_def_key() helper function
which constructs TDC key without risk of result buffer overrun.
Places in code that construct TDC keys were changed to use this
function.
Also changed rm_temporary_table() and open_new_frm() functions
to avoid use of "unsafe" strmov() and strxmov() functions and
use safer strnxmov() instead.
ROBUST AGAINST BUGS IN CALLERS".
Both MDL subsystems and Table Definition Cache code assume
that callers ensure that names of objects passed to them are
not longer than NAME_LEN bytes. Unfortunately due to bugs in
callers this assumption might be broken in some cases. As
result we get nasty bugs causing buffer overruns when we
construct MDL key or TDC key from object names.
This patch makes TDC code more robust against such bugs by
ensuring that we always checking size of result buffer when
constructing TDC keys. This doesn't free its callers from
ensuring that both db and table names are shorter than
NAME_LEN bytes. But at least this steps prevents buffer
overruns in case of bug in caller, replacing them with less
harmful behavior.
This is 5.1-only version of patch.
This patch introduces new version of create_table_def_key()
helper function which constructs TDC key without risk of
result buffer overrun. Places in code that construct TDC keys
were changed to use this function.
Also changed rm_temporary_table() and open_new_frm() functions
to avoid use of "unsafe" strmov() and strxmov() functions and
use safer strnxmov() instead.
QUOTING IN REPLICATION
Problem: Misquoting or unquoted identifiers may lead to
incorrect statements to be logged to the binary log.
Fix: we use specialized functions to append quoted identifiers in
the statements generated by the server.
FAILED IN CHECK_LOCK_AND_ST
Problem:
--------
lock_tables() is supposed to invoke check_lock_and_start_stmt()
for TABLE_LIST which are directly used by top level statement.
TABLE_LIST->prelocking_placeholder is set only for TABLE_LIST
which are used indirectly by stored programs invoked by top
level statement. Hence check_lock_and_start_stmt() should have
TABLE_LIST->prelocking_placeholder==false always, but it is
observed that this assert fails.
The failure is found during RQG test rqg_signal_resignal.
Analysis:
---------
open_tables() invokes open_and_process_routines() where it
finds all the TABLE_LIST that belong to the routine and
adds it to thd->lex->query_tables. During this process if
the open_and_process_routines() fail for some reason,
we are supposed to chop-off all the TABLE_LIST found during
calls to open_and_process_routines(). But, in practice this
is not happening.
thd->lex->query_tables_own_last is supposed to point to a
node in thd->lex->query_tables, which would be a first
TABLE_LIST used indirectly by stored programs invoked by
top level statement. This is found to be not-set correctly
when we plan to chop-off TABLE_LIST's, when
open_and_process_routines() failed.
close_tables_for_reopen() does chop-off all the TABLE_LIST
added after thd->lex->query_table_own_last. This is invoked
upon error in open_and_process_routines(). This call would
not work as expected as thd->lex->query_tables_own_last
is not set, or is not set to correctly.
Further, when open_tables() restarts the process of finding
TABLE_LIST belonging to stored programs, and as the
thd->lex->query_tables_own_last points to in-correct node,
there is possibility of new iteration setting the
thd->lex->query_tables_own_last past some old nodes that
belong to stored programs, added earlier and not removed.
Later when open_tables() completes, lock_tables() ends up
invoking check_lock_and_start_stmt() for TABLE_LIST which
belong to stored programs, which is not expected behavior
and hence we hit the assert
TABLE_LIST->prelocking_placeholder==false.
Due to above behavior, if a user application tries to
execute a SQL statement which invokes some stored function
and if the lock grant on stored function fails due to a
deadlock, then mysqld crashes.
Fix:
----
open_tables() remembers save_query_tables_last which points
to thd-lex->query_tables_last before calls to
open_and_process_routines(). If there is no known
thd->lex->query_tables_own_last set, we are now setting
thd->lex->query_tables_own_last to save_query_tables_last.
This will make sure that the call to close_tables_for_reopen()
will chop-off the list correctly, in other words we now
remove all the nodes added to thd->lex->query_tables, by
previous calls to open_and_process_routines().
Further, it is found that the problem exists starting
from 5.5, due to a code refactoring effort related to
open_tables(). Hence, the fix will be pushed in 5.5, 5.6
and trunk.
PROBLEM:
Threads end-up in deadlock due to locks acquired as described
below,
con1: Run Query on a table.
It is important that this SELECT must back-off while
trying to open the t1 and enter into wait_for_condition().
The SELECT then is blocked trying to lock mysys_var->mutex
which is held by con3. The very significant fact here is
that mysys_var->current_mutex will still point to LOCK_open,
even if LOCK_open is no longer held by con1 at this point.
con2: Try dropping table used in con1 or query some table.
It will hold LOCK_open and be blocked trying to lock
kernel_mutex held by con4.
con3: Try killing the query run by con1.
It will hold THD::LOCK_thd_data belonging to con1 while
trying to lock mysys_var->current_mutex belonging to con1.
But current_mutex will point to LOCK_open which is held
by con2.
con4: Get innodb engine status
It will hold kernel_mutex, trying to lock THD::LOCK_thd_data
belonging to con1 which is held by con3.
So while technically only con2, con3 and con4 participate in the
deadlock, con1's mysys_var->current_mutex pointing to LOCK_open
is a vital component of the deadlock.
CYCLE = (THD::LOCK_thd_data -> LOCK_open ->
kernel_mutex -> THD::LOCK_thd_data)
FIX:
LOCK_thd_data has responsibility of protecting,
1) thd->query, thd->query_length
2) VIO
3) thd->mysys_var (used by KILL statement and shutdown)
4) THD during thread delete.
Among above responsibilities, 1), 2)and (3,4) seems to be three
independent group of responsibility. If there is different LOCK
owning responsibility of (3,4), the above mentioned deadlock cycle
can be avoid. This fix introduces LOCK_thd_kill to handle
responsibility (3,4), which eliminates the deadlock issue.
Note: The problem is not found in 5.5. Introduction MDL subsystem
caused metadata locking responsibility to be moved from TDC/TC to
MDL subsystem. Due to this, responsibility of LOCK_open is reduced.
As the use of LOCK_open is removed in open_table() and
mysql_rm_table() the above mentioned CYCLE does not form.
Revision ID for changes,
open_table() = dlenev@mysql.com-20100727133458-m3ua9oslnx8fbbvz
mysql_rm_table() = jon.hauglid@oracle.com-20101116100012-kxep9txz2fxy3nmw
BUG#11761686 insert_id event is not filtered.
Two issues are covered.
INSERT into autoincrement field which is not the first part in the composed primary key
is unsafe by autoincrement logging design. The case is specific to MyISAM engine
because Innodb does not allow such table definition.
However no warnings and row-format logging in the MIXED mode was done, and
that is fixed.
Int-, Rand-, User-var log-events were not filtered along with their parent
query that made possible them to screw up execution context of the following
query.
Fixed with deferring their execution until the parent query.
******
Bug#11754117
Post review fixes.
mysql-test/suite/rpl/r/rpl_auto_increment_bug45679.result:
a new result file is added.
mysql-test/suite/rpl/r/rpl_filter_tables_not_exist.result:
results updated.
mysql-test/suite/rpl/t/rpl_auto_increment_bug45679.test:
regression test for BUG#11754117-45670 is added.
mysql-test/suite/rpl/t/rpl_filter_tables_not_exist.test:
regression test for filtering issue of BUG#11754117 - 45670 is added.
sql/log_event.cc:
Logics are added for deferring and executing events associated
with the Query event.
sql/log_event.h:
Interface to deferred events batch execution is added.
sql/rpl_rli.cc:
initialization for new RLI members is added.
sql/rpl_rli.h:
New members to RLI are added to facilitate deferred events gathering
and execution control;
two general character RLI cleanup methods are constructed.
sql/rpl_utility.cc:
Deferred_log_events methods are difined.
sql/rpl_utility.h:
A new class Deferred_log_events is defined to implement
IRU events gathering, execution and cleanup.
sql/slave.cc:
Necessary changes to initialize `rli->deferred_events' and prevent
deferred event deletion in the main read-exec branch.
sql/sql_base.cc:
A new safe-check function for multi-part pk with auto-increment is defined
and deployed in lock_tables().
sql/sql_class.cc:
Initialization for a new member and replication cleanups are added
to THD class.
sql/sql_class.h:
THD class receives a new member to hold a specific execution
context for slave applier.
sql/sql_parse.cc:
Execution of the deferred event in started prior to its parent query.
Description: When the table has more than one unique or primary key,
INSERT... ON DUP KEY UPDATE statement is sensitive to the order in which
the storage engines checks the keys. Depending on this order, the storage
engine may determine different rows to mysql, and hence mysql can update
different rows on master and slave.
Solution: We mark INSERT...ON DUP KEY UPDATE on a table with more than on unique
key as unsafe therefore the event will be logged in row format if it is available
(ROW/MIXED). If only STATEMENT format is available, a warning will be thrown.
mysql-test/suite/binlog/r/binlog_unsafe.result:
Updated result file
mysql-test/suite/binlog/t/binlog_unsafe.test:
Added test to check for warning being thrown when the unsafe statement is executed
mysql-test/suite/rpl/r/rpl_known_bugs_detection.result:
Updated result file
sql/share/errmsg-utf8.txt:
Added new warning message
sql/sql_base.cc:
check for tables in the query with more than one UNIQUE KEY and INSERT ON DUPLICATE KEY UPDATE, and mark such statements unsafe.
Fixed a typo in the comment.
Fixing test cases which were previouslyno throwing due
disable warnings macro.
sql/sql_base.cc:
Change in indentation and fixing a typo in the comment.
Problem: Statements that write to tables with auto_increment columns
based on the selection from another table, may lead to master
and slave going out of sync, as the order in which the rows
are retrieved from the table may differ on master and slave.
Solution: We mark writing to a table with auto_increment table
based on the rows selected from another table as unsafe. This
will cause the execution of such statements to throw a warning
and forces the statement to be logged in ROW if the logging
format is mixed.
Changes:
1. All the statements that writes to a table with auto_increment
column(s) based on the rows fetched from another table, will now
be unsafe.
2. CREATE TABLE with SELECT will now be unsafe.
sql/share/errmsg-utf8.txt:
Added new warning messages.
sql/sql_base.cc:
-Created function to check statements that write to
tables with auto_increment column and has select.
-Marked all the statements that write to a table
with auto_increment column based on rows fetched
from other table(s) as unsafe.
sql/sql_table.cc:
mark CREATE TABLE[with auto_increment column] as unsafe.
Problem: Statements that write to tables with auto_increment columns
based on the selection from another table, may lead to master
and slave going out of sync, as the order in which the rows
are retrived from the table may differ on master and slave.
Solution: We mark writing to a table with auto_increment table
as unsafe. This will cause the execution of such statements to
throw a warning and forces the statement to be logged in ROW if
the logging format is mixed.
Changes:
1. All the statements that writes to a table with auto_increment
column(s) based on the rows fetched from another table, will now
be unsafe.
2. CREATE TABLE with SELECT will now be unsafe.
sql/share/errmsg-utf8.txt:
Added new Warning messages
sql/sql_base.cc:
created a new function that checks for select + write on a autoinc table
made all such statements to be unsafe.
sql/sql_parse.cc:
made create autoincremnet tabble + select unsafe
NEW_FRM_MEM WITHOUT NEEDING TO".
During the process of opening tables for a statement, we allocated
memory which was used only during view loading even in cases when the
statement didn't use any views. Such an unnecessary allocation (and
corresponding freeing) might have caused significant performance
overhead in some workloads. For example, it caused up to 15% slowdown
in a simple stored routine calculating Fibonacci's numbers.
This memory was pre-allocated as part of "new_frm_mem" MEM_ROOT
initialization at the beginning of open_tables().
This patch addresses this issue by turning off memory pre-allocation
during initialization for this MEM_ROOT. Now, memory on this root
will be allocated only at the point when the first .FRM for a view is
opened.
The patch doesn't contain a test case since it is hard to test the
performance improvements or the absence of memory allocation in our
test framework.
CRASHES SERVER
Flushing of MERGE table or one of its child tables, which was
locked by flushing thread using LOCK TABLES, might have caused
crashes or assertion failures if the thread failed to reopen
child or parent table.
Particularly, this might have happened when another connection
killed this FLUSH TABLE statement/connection.
Also this problem might have occurred when we failed to reopen
MERGE table or one of its children when executing DDL statement
under LOCK TABLES.
The problem was caused by the fact that reopen_tables() might
have failed to reopen child table but still tried to reopen,
reattach children for and re-lock its parent. Vice versa it
might have failed to reopen parent but kept references from
children to parent around. Since reopen_tables() closes table
it has failed to reopen and therefore frees all associated
memory such dangling references led to crashes when followed.
This patch solves this problem by ensuring that we always close
parent table and all its children if we fail to reopen this
table or one of its children. Same happens if we fail to reattach
children to parent.
Affects 5.1 only.
mysql-test/r/merge.result:
A test case for BUG#11763712.
mysql-test/t/merge.test:
A test case for BUG#11763712.
sql/sql_base.cc:
When flushing tables under LOCK TABLES, all locked
and flushed tables are released and then reopened.
It may happen that we failed to reopen some tables,
in this case we reopen as much tables as possible.
If it was not possible to reopen MERGE child, MERGE
parent is unusable and must be removed from thread
open tables list.
If it was not possible to reopen MERGE parent, all
MERGE child table objects are unusable as well, at
least because their locks are handled by MERGE parent.
They must also be removed from thread open tables
list.
In other words if it was impossible to reopen any
object of a MERGE table or reattach child tables,
all objects of this MERGE table must be considered
unusable and closed.
There is an optimization of DISTINCT in JOIN::optimize()
which depends on THD::used_tables value. Each SELECT statement
inside SP resets used_tables value(see mysql_select()) and it
leads to wrong result. The fix is to replace THD::used_tables
with LEX::used_tables.
mysql-test/r/sp.result:
test case
mysql-test/t/sp.test:
test case
sql/sql_base.cc:
THD::used_tables is replaced with LEX::used_tables
sql/sql_class.cc:
THD::used_tables is replaced with LEX::used_tables
sql/sql_class.h:
THD::used_tables is replaced with LEX::used_tables
sql/sql_insert.cc:
THD::used_tables is replaced with LEX::used_tables
sql/sql_lex.cc:
THD::used_tables is replaced with LEX::used_tables
sql/sql_lex.h:
THD::used_tables is replaced with LEX::used_tables
sql/sql_prepare.cc:
THD::used_tables is replaced with LEX::used_tables
sql/sql_select.cc:
THD::used_tables is replaced with LEX::used_tables
SHOW ALL PROBLEMS FOR MERGE TABLE COMPLIANCE IN 5.1".
The problem was that CHECK/REPAIR TABLE for a MERGE table which
had several children missing or in wrong engine reported only
issue with the first such table in its result-set. While in 5.0
this statement returned the whole list of problematic tables.
Ability to report problems for all children was lost during
significant refactorings of MERGE code which were done as part
of work on 5.1 and 5.5 releases.
This patch restores status quo ante refactorings by changing
code in such a way that:
1) Failure to open child table due to its absence during CHECK/
REPAIR TABLE for a MERGE table is not reported immediately
when its absence is discovered in open_tables(). Instead
handling/error reporting in such a situation is postponed
until the moment when children are attached.
2) Code performing attaching of children no longer stops when
it encounters first problem with one of the children during
CHECK/REPAIR TABLE. Instead it continues iteration through
the child list until all problems caused by child absence/
wrong engine are reported.
Note that even after this change problem with mismatch of
child/parent definition won't be reported if there is also
another child missing, but this is how it was in 5.0 as well.
mysql-test/r/merge.result:
Added test case for bug #11754210 - "45777: CHECK TABLE DOESN'T
SHOW ALL PROBLEMS FOR MERGE TABLE COMPLIANCE IN 5.1".
Adjusted results of existing tests to the fact that CHECK/REPAIR
TABLE statements now try to report problems about missing table/
wrong engine for all underlying tables, and to the fact that
mismatch of parent/child definitions is always reported as an
error and not a warning.
mysql-test/t/merge.test:
Added test case for bug #11754210 - "45777: CHECK TABLE DOESN'T
SHOW ALL PROBLEMS FOR MERGE TABLE COMPLIANCE IN 5.1".
sql/sql_base.cc:
Changed code responsible for opening tables to ignore the fact
that underlying tables of a MERGE table are missing, if this
table is opened for CHECK/REPAIR TABLE.
The absence of underlying tables in this case is now detected and
appropriate error is reported at the point when child tables are
attached. At this point we can produce full list of problematic
child tables/errors to be returned as part of CHECK/REPAIR TABLE
result-set.
storage/myisammrg/ha_myisammrg.cc:
Changed myisammrg_attach_children_callback() to handle new
situation, when during CHECK/REPAIR TABLE we do not report
error about missing child immediately when this fact is
discovered during open_tables() but postpone error-reporting
till the time when children are attached.
Also this callback is now responsible for pushing an error
mentioning problematic child table to the list of errors to
be reported by CHECK/REPAIR TABLE statements.
Finally, since now myrg_attach_children() no longer relies on
return value from callback to determine the end of the children
list, callback no longer needs to set my_errno value and can
be simplified.
Changed myrg_print_wrong_table() to always report a problem
with child table as an error and not as a warning. This makes
reporting for different types of issues with child tables
more consistent and compatible with 5.0 behavior.
storage/myisammrg/myrg_open.c:
Changed code in myrg_attach_children() not to abort on the
first problem with a child table when attaching children to
parent MERGE table during CHECK/REPAIR TABLE statement
execution. This allows CHECK/REPAIR TABLE to report problems
about absence/wrong engine for all underlying tables as
part of their result-set.
In sql_class.cc, 'row_count', of type 'ha_rows', was used as last argument for
ER_TRUNCATED_WRONG_VALUE_FOR_FIELD which is
"Incorrect %-.32s value: '%-.128s' for column '%.192s' at row %ld".
So 'ha_rows' was used as 'long'.
On SPARC32 Solaris builds, 'long' is 4 bytes and 'ha_rows' is 'longlong' i.e. 8 bytes.
So the printf-like code was reading only the first 4 bytes.
Because the CPU is big-endian, 1LL is 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01
so the first four bytes yield 0. So the warning message had "row 0" instead of
"row 1" in test outfile_loaddata.test:
-Warning 1366 Incorrect string value: '\xE1\xE2\xF7' for column 'b' at row 1
+Warning 1366 Incorrect string value: '\xE1\xE2\xF7' for column 'b' at row 0
All error-messaging functions which internally invoke some printf-life function
are potential candidate for such mistakes.
One apparently easy way to catch such mistakes is to use
ATTRIBUTE_FORMAT (from my_attribute.h).
But this works only when call site has both:
a) the format as a string literal
b) the types of arguments.
So:
func(ER(ER_BLAH), 10);
will silently not be checked, because ER(ER_BLAH) is not known at
compile time (it is known at run-time, and depends on the chosen
language).
And
func("%s", a va_list argument);
has the same problem, as the *real* type of arguments is not
known at this site at compile time (it's known in some caller).
Moreover,
func(ER(ER_BLAH));
though possibly correct (if ER(ER_BLAH) has no '%' markers), will not
compile (gcc says "error: format not a string literal and no format
arguments").
Consequences:
1) ATTRIBUTE_FORMAT is here added only to functions which in practice
take "string literal" formats: "my_error_reporter" and "print_admin_msg".
2) it cannot be added to the other functions: my_error(),
push_warning_printf(), Table_check_intact::report_error(),
general_log_print().
To do a one-time check of functions listed in (2), the following
"static code analysis" has been done:
1) replace
my_error(ER_xxx, arguments for substitution in format)
with the equivalent
my_printf_error(ER_xxx,ER(ER_xxx), arguments for substitution in
format),
so that we have ER(ER_xxx) and the arguments *in the same call site*
2) add ATTRIBUTE_FORMAT to push_warning_printf(),
Table_check_intact::report_error(), general_log_print()
3) replace ER(xxx) with the hard-coded English text found in
errmsg.txt (like: ER(ER_UNKNOWN_ERROR) is replaced with
"Unknown error"), so that a call site has the format as string literal
4) this way, ATTRIBUTE_FORMAT can effectively do its job
5) compile, fix errors detected by ATTRIBUTE_FORMAT
6) revert steps 1-2-3.
The present patch has no compiler error when submitted again to the
static code analysis above.
It cannot catch all problems though: see Field::set_warning(), in
which a call to push_warning_printf() has a variable error
(thus, not replacable by a string literal); I checked set_warning() calls
by hand though.
See also WL 5883 for one proposal to avoid such bugs from appearing
again in the future.
The issues fixed in the patch are:
a) mismatch in types (like 'int' passed to '%ld')
b) more arguments passed than specified in the format.
This patch resolves mismatches by changing the type/number of arguments,
not by changing error messages of sql/share/errmsg.txt. The latter would be wrong,
per the following old rule: errmsg.txt must be as stable as possible; no insertions
or deletions of messages, no changes of type or number of printf-like format specifiers,
are allowed, as long as the change impacts a message already released in a GA version.
If this rule is not followed:
- Connectors, which use error message numbers, will be confused (by insertions/deletions
of messages)
- using errmsg.sys of MySQL 5.1.n with mysqld of MySQL 5.1.(n+1)
could produce wrong messages or crash; such usage can easily happen if
installing 5.1.(n+1) while /etc/my.cnf still has --language=/path/to/5.1.n/xxx;
or if copying mysqld from 5.1.(n+1) into a 5.1.n installation.
When fixing b), I have verified that the superfluous arguments were not used in the format
in the first 5.1 GA (5.1.30 'bteam@astra04-20081114162938-z8mctjp6st27uobm').
Had they been used, then passing them today, even if the message doesn't use them
anymore, would have been necessary, as explained above.
include/my_getopt.h:
this function pointer is used only with "string literal" formats, so we can add
ATTRIBUTE_FORMAT.
mysql-test/collections/default.experimental:
test should pass now
sql/derror.cc:
by having a format as string literal, ATTRIBUTE_FORMAT check becomes effective.
sql/events.cc:
Change justified by the following excerpt from sql/share/errmsg.txt:
ER_EVENT_SAME_NAME
eng "Same old and new event name"
ER_EVENT_SET_VAR_ERROR
eng "Error during starting/stopping of the scheduler. Error code %u"
sql/field.cc:
ER_TOO_BIG_SCALE 42000 S1009
eng "Too big scale %d specified for column '%-.192s'. Maximum is %lu."
ER_TOO_BIG_PRECISION 42000 S1009
eng "Too big precision %d specified for column '%-.192s'. Maximum is %lu."
ER_TOO_BIG_DISPLAYWIDTH 42000 S1009
eng "Display width out of range for column '%-.192s' (max = %lu)"
sql/ha_ndbcluster.cc:
ER_OUTOFMEMORY HY001 S1001
eng "Out of memory; restart server and try again (needed %d bytes)"
(sizeof() returns size_t)
sql/ha_ndbcluster_binlog.cc:
Too many arguments for:
ER_GET_ERRMSG
eng "Got error %d '%-.100s' from %s"
Patch by Jonas Oreland.
sql/ha_partition.cc:
print_admin_msg() is used only with a literal as format, so ATTRIBUTE_FORMAT
works.
sql/handler.cc:
ER_OUTOFMEMORY HY001 S1001
eng "Out of memory; restart server and try again (needed %d bytes)"
(sizeof() returns size_t)
sql/item_create.cc:
ER_TOO_BIG_SCALE 42000 S1009
eng "Too big scale %d specified for column '%-.192s'. Maximum is %lu."
ER_TOO_BIG_PRECISION 42000 S1009
eng "Too big precision %d specified for column '%-.192s'. Maximum is %lu."
'c_len' and 'c_dec' are char*, passed as %d !! We don't know their value
(as strtoul() failed), but they are likely big, so we use INT_MAX.
'len' is ulong.
sql/item_func.cc:
ER_WARN_DATA_OUT_OF_RANGE 22003
eng "Out of range value for column '%s' at row %ld"
ER_CANT_FIND_UDF
eng "Can't load function '%-.192s'"
sql/item_strfunc.cc:
ER_TOO_BIG_FOR_UNCOMPRESS
eng "Uncompressed data size too large; the maximum size is %d (probably, length of uncompressed data was corrupted)"
max_allowed_packet is ulong.
sql/mysql_priv.h:
sql_print_message_func is a function _pointer_.
sql/sp_head.cc:
ER_SP_RECURSION_LIMIT
eng "Recursive limit %d (as set by the max_sp_recursion_depth variable) was exceeded for routine %.192s"
max_sp_recursion_depth is ulong
sql/sql_acl.cc:
ER_PASSWORD_NO_MATCH 42000
eng "Can't find any matching row in the user table"
ER_CANT_CREATE_USER_WITH_GRANT 42000
eng "You are not allowed to create a user with GRANT"
sql/sql_base.cc:
ER_NOT_KEYFILE
eng "Incorrect key file for table '%-.200s'; try to repair it"
ER_TOO_MANY_TABLES
eng "Too many tables; MySQL can only use %d tables in a join"
MAX_TABLES is size_t.
sql/sql_binlog.cc:
ER_UNKNOWN_ERROR
eng "Unknown error"
sql/sql_class.cc:
ER_TRUNCATED_WRONG_VALUE_FOR_FIELD
eng "Incorrect %-.32s value: '%-.128s' for column '%.192s' at row %ld"
WARN_DATA_TRUNCATED 01000
eng "Data truncated for column '%s' at row %ld"
sql/sql_connect.cc:
ER_HANDSHAKE_ERROR 08S01
eng "Bad handshake"
ER_BAD_HOST_ERROR 08S01
eng "Can't get hostname for your address"
sql/sql_insert.cc:
ER_WRONG_VALUE_COUNT_ON_ROW 21S01
eng "Column count doesn't match value count at row %ld"
sql/sql_parse.cc:
ER_WARN_HOSTNAME_WONT_WORK
eng "MySQL is started in --skip-name-resolve mode; you must restart it without this switch for this grant to work"
ER_TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT
eng "Too high level of nesting for select"
ER_UNKNOWN_ERROR
eng "Unknown error"
sql/sql_partition.cc:
ER_OUTOFMEMORY HY001 S1001
eng "Out of memory; restart server and try again (needed %d bytes)"
sql/sql_plugin.cc:
ER_OUTOFMEMORY HY001 S1001
eng "Out of memory; restart server and try again (needed %d bytes)"
sql/sql_prepare.cc:
ER_OUTOFMEMORY HY001 S1001
eng "Out of memory; restart server and try again (needed %d bytes)"
ER_UNKNOWN_STMT_HANDLER
eng "Unknown prepared statement handler (%.*s) given to %s"
length value (for '%.*s') must be 'int', per the doc of printf()
and the code of my_vsnprintf().
sql/sql_show.cc:
ER_OUTOFMEMORY HY001 S1001
eng "Out of memory; restart server and try again (needed %d bytes)"
sql/sql_table.cc:
ER_TOO_BIG_FIELDLENGTH 42000 S1009
eng "Column length too big for column '%-.192s' (max = %lu); use BLOB or TEXT instead"
sql/table.cc:
ER_NOT_FORM_FILE
eng "Incorrect information in file: '%-.200s'"
ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE
eng "Column count of mysql.%s is wrong. Expected %d, found %d. Created with MySQL %d, now running %d. Please use mysql_upgrade to fix this error."
table->s->mysql_version is ulong.
sql/unireg.cc:
ER_TOO_LONG_TABLE_COMMENT
eng "Comment for table '%-.64s' is too long (max = %lu)"
ER_TOO_LONG_FIELD_COMMENT
eng "Comment for field '%-.64s' is too long (max = %lu)"
ER_TOO_BIG_ROWSIZE 42000
eng "Row size too large. The maximum row size for the used table type, not counting BLOBs, is %ld. You have to change some columns to TEXT or BLOBs"
TRX->CONC_STATE == 0 || TRX->CONC_STATE == 1
This bug was a different manifestation of Bug#11766752,
which was previously only fixed on mysql-trunk.
This patch backports the fix for Bug#11766752 to mysql-5.5,
which fixes the problem. The patch also adds some extra test
coverage.
ASSERTION TABLE->DB_STAT FAILED IN
SQL_BASE.CC::OPEN_TABLE() DURING I_S Q
This assert could be triggered if a statement requiring a name
lock on a table (e.g. DROP TRIGGER) executed concurrently
with an I_S query which also used the table.
One connection first started an I_S query that opened a given table.
Then another connection started a statement requiring a name lock
on the same table. This statement was blocked since the table was
in use by the I_S query. When the I_S query resumed and tried to
open the table again as part of get_all_tables(), it would encounter
a table instance with an old version number representing the pending
name lock. Since I_S queries ignore version checks and thus pending
name locks, it would try to continue. This caused it to encounter
the assert. The assert checked that the TABLE instance found with a
different version, was a real, open table. However, since this TABLE
instance instead represented a pending name lock, the check would
fail and trigger the assert.
This patch fixes the problem by removing the assert. It is ok for
TABLE::db_stat to be 0 in this case since the TABLE instance can
represent a pending name lock.
Test case added to lock_sync.test.
FAILS IN SET_FIELD_ITERATOR
(Former 59299)
When a PROCEDURE does a natural join, resolving of which columns are
used in the join is done only once; consecutive CALLs to the procedure
will reuse this information:
CREATE PROCEDURE proc() SELECT * FROM t1 NATURAL JOIN v1;
CALL proc(); <- natural join columns resolved here
CALL proc(); <- reuse resolved NJ columns from first CALL
The second CALL knows that it can reuse the resolved NJ columns because
the first CALL sets st_select_lex::first_natural_join_processing=false.
The problem in this bug was that the table the view v1 depends on
changed between CREATE PROCEDURE and the first CALL:
CREATE PROCEDURE...
ALTER TABLE t2 CHANGE COLUMN a b CHAR;
CALL proc(); <- error when resolving natural join columns
CALL proc(); <- tries to reuse from first CALL => crash
The fix for this bug is to set first_natural_join_processing= FALSE iff
the natural join columns resolving was successful.
mysql-test/r/sp.result:
Add test for bug 11766234
mysql-test/t/sp.test:
Add test for bug 11766234
sql/sql_base.cc:
Set first_natural_join_processing= FALSE iff the natural join columns resolving was successful.
FLUSH TABLES under FLUSH TABLES <list> WITH READ LOCK leads
to assert failure.
This assert was triggered if a statement tried up upgrade a metadata
lock with an active FLUSH TABLE <list> WITH READ LOCK. The assert
checks that the connection already holds a global intention exclusive
metadata lock. However, FLUSH TABLE <list> WITH READ LOCK does not
acquire this lock in order to be compatible with FLUSH TABLES WITH
READ LOCK. Therefore any metadata lock upgrade caused the assert to
be triggered.
This patch fixes the problem by preventing metadata lock upgrade
if the connection has an active FLUSH TABLE <list> WITH READ LOCK.
ER_TABLE_NOT_LOCKED_FOR_WRITE will instead be reported to the client.
Test case added to flush.test.
to crash mysqld".
handler::pushed_cond was not always properly reset when table objects where
recycled via the table cache.
handler::pushed_cond is now set to NULL in handler::ha_reset(). This should
prevent pushed conditions from (incorrectly) re-apperaring in later queries.
- Removed files specific to compiling on OS/2
- Removed files specific to SCO Unix packaging
- Removed "libmysqld/copyright", text is included in documentation
- Removed LaTeX headers for NDB Doxygen documentation
- Removed obsolete NDB files
- Removed "mkisofs" binaries
- Removed the "cvs2cl.pl" script
- Changed a few GPL texts to use "program" instead of "library"
temptable views
The TABLE::key_read field indicates if the optimizer has found that row
retrieval only should access the index tree. The triggered assert
inside close_thread_table() checks that this field has been reset when
the table is about to be closed.
During normal execution, these fields are reset right before tables are
closed at the end of mysql_execute_command(). But in the case of errors,
tables are closed earlier. The patch for Bug#52044 refactored the open
tables code so that close_thread_tables() is called immediately if
opening of tables fails. At this point in the execution, it could
happend that all TABLE::key_read fields had not been properly reset,
therefore triggering the assert.
The problematic statement in this case was EXPLAIN where the query
accessed two derived tables and where the first derived table was
processed successfully while the second derived table was not.
Since it was an EXPLAIN, TABLE::key_read fields were not reset after
successful derived table processing since the state needs to be
accessible afterwards. When processing of the second derived table
failed, it's corresponding SELECT_LEX_UNIT was cleaned, which caused
it's TABLE::key_read fields to be reset. Since processing failed,
the error path of open_and_lock_tables() was entered and
close_thread_tables() was called. The assert was then triggered due
to the TABLE::key_read fields set during processing of the first
derived table.
This patch fixes the problem by adding a new derived table processor,
mysql_derived_cleanup() that is called after mysql_derived_filling().
It causes cleanup of all SELECT_LEX_UNITs to be called, resetting
all relevant TABLE::key_read fields.
Test case added to derived.test.
The user-visible problem was that changes to column-level privileges,
happened in between of PREPARE and EXECUTE of a prepared statement, were
neglected. I.e. a prepared statement could be executed with the
column-level privileges as of PREPARE-time. The problem existed for
column-level privileges only.
A similar problem existed for stored programs: the changes between
executions didn't have an effect.
Technically the thing is that table references are cached in
Prepared_statement::prepare() call. In subsequent
Prepared_statement::execute() calls those cached values are used.
There are two functions to get a field by name: find_field_in_table() and
find_field_in_table_ref(). On prepare-phase find_field_in_table_ref() is
called, on execute-phase -- find_field_in_table() because the table is
cached. find_field_in_table() does not check column-level privileges and
expects the caller to do that. The problem was that this check was
forgotten.
The fix is to check them there as it happens in find_field_in_table_ref().
bug #57006 "Deadlock between HANDLER and FLUSH TABLES WITH READ
LOCK" and bug #54673 "It takes too long to get readlock for
'FLUSH TABLES WITH READ LOCK'".
The first bug manifested itself as a deadlock which occurred
when a connection, which had some table open through HANDLER
statement, tried to update some data through DML statement
while another connection tried to execute FLUSH TABLES WITH
READ LOCK concurrently.
What happened was that FTWRL in the second connection managed
to perform first step of GRL acquisition and thus blocked all
upcoming DML. After that it started to wait for table open
through HANDLER statement to be flushed. When the first connection
tried to execute DML it has started to wait for GRL/the second
connection creating deadlock.
The second bug manifested itself as starvation of FLUSH TABLES
WITH READ LOCK statements in cases when there was a constant
stream of concurrent DML statements (in two or more
connections).
This has happened because requests for protection against GRL
which were acquired by DML statements were ignoring presence of
pending GRL and thus the latter was starved.
This patch solves both these problems by re-implementing GRL
using metadata locks.
Similar to the old implementation acquisition of GRL in new
implementation is two-step. During the first step we block
all concurrent DML and DDL statements by acquiring global S
metadata lock (each DML and DDL statement acquires global IX
lock for its duration). During the second step we block commits
by acquiring global S lock in COMMIT namespace (commit code
acquires global IX lock in this namespace).
Note that unlike in old implementation acquisition of
protection against GRL in DML and DDL is semi-automatic.
We assume that any statement which should be blocked by GRL
will either open and acquires write-lock on tables or acquires
metadata locks on objects it is going to modify. For any such
statement global IX metadata lock is automatically acquired
for its duration.
The first problem is solved because waits for GRL become
visible to deadlock detector in metadata locking subsystem
and thus deadlocks like one in the first bug become impossible.
The second problem is solved because global S locks which
are used for GRL implementation are given preference over
IX locks which are acquired by concurrent DML (and we can
switch to fair scheduling in future if needed).
Important change:
FTWRL/GRL no longer blocks DML and DDL on temporary tables.
Before this patch behavior was not consistent in this respect:
in some cases DML/DDL statements on temporary tables were
blocked while in others they were not. Since the main use cases
for FTWRL are various forms of backups and temporary tables are
not preserved during backups we have opted for consistently
allowing DML/DDL on temporary tables during FTWRL/GRL.
Important change:
This patch changes thread state names which are used when
DML/DDL of FTWRL is waiting for global read lock. It is now
either "Waiting for global read lock" or "Waiting for commit
lock" depending on the stage on which FTWRL is.
Incompatible change:
To solve deadlock in events code which was exposed by this
patch we have to replace LOCK_event_metadata mutex with
metadata locks on events. As result we have to prohibit
DDL on events under LOCK TABLES.
This patch also adds extensive test coverage for interaction
of DML/DDL and FTWRL.
Performance of new and old global read lock implementations
in sysbench tests were compared. There were no significant
difference between new and old implementations.
mysql-test/include/check_ftwrl_compatible.inc:
Added helper script which allows to check that a statement is
compatible with FLUSH TABLES WITH READ LOCK.
mysql-test/include/check_ftwrl_incompatible.inc:
Added helper script which allows to check that a statement is
incompatible with FLUSH TABLES WITH READ LOCK.
mysql-test/include/handler.inc:
Adjusted test case to the fact that now DROP TABLE closes
open HANDLERs for the table to be dropped before checking
if there active FTWRL in this connection.
mysql-test/include/wait_show_condition.inc:
Fixed small error in the timeout message. The correct name
of variable used as parameter for this script is "$condition"
and not "$wait_condition".
mysql-test/r/delayed.result:
Added test coverage for scenario which triggered assert in
metadata locking subsystem.
mysql-test/r/events_2.result:
Updated test results after prohibiting event DDL operations
under LOCK TABLES.
mysql-test/r/flush.result:
Added test coverage for bug #57006 "Deadlock between HANDLER
and FLUSH TABLES WITH READ LOCK".
mysql-test/r/flush_read_lock.result:
Added test coverage for various aspects of FLUSH TABLES WITH
READ LOCK functionality.
mysql-test/r/flush_read_lock_kill.result:
Adjusted test case after replacing custom global read lock
implementation with one based on metadata locks. Use new
debug_sync point. Do not disable concurrent inserts as now
InnoDB we always use InnoDB table.
mysql-test/r/handler_innodb.result:
Adjusted test case to the fact that now DROP TABLE closes
open HANDLERs for the table to be dropped before checking
if there active FTWRL in this connection.
mysql-test/r/handler_myisam.result:
Adjusted test case to the fact that now DROP TABLE closes
open HANDLERs for the table to be dropped before checking
if there active FTWRL in this connection.
mysql-test/r/mdl_sync.result:
Adjusted test case after replacing custom global read lock
implementation with one based on metadata locks. Replaced
usage of GRL-specific debug_sync's with appropriate sync
points in MDL subsystem.
mysql-test/suite/perfschema/r/dml_setup_instruments.result:
Updated test results after removing global
COND_global_read_lock condition variable.
mysql-test/suite/perfschema/r/func_file_io.result:
Ensure that this test doesn't affect subsequent tests.
At the end of its execution enable back P_S instrumentation
which this test disables at some point.
mysql-test/suite/perfschema/r/func_mutex.result:
Ensure that this test doesn't affect subsequent tests.
At the end of its execution enable back P_S instrumentation
which this test disables at some point.
mysql-test/suite/perfschema/r/global_read_lock.result:
Adjusted test case to take into account that new GRL
implementation is based on MDL.
mysql-test/suite/perfschema/r/server_init.result:
Adjusted test case after replacing custom global read
lock implementation with one based on MDL and replacing
LOCK_event_metadata mutex with metadata lock.
mysql-test/suite/perfschema/t/func_file_io.test:
Ensure that this test doesn't affect subsequent tests.
At the end of its execution enable back P_S instrumentation
which this test disables at some point.
mysql-test/suite/perfschema/t/func_mutex.test:
Ensure that this test doesn't affect subsequent tests.
At the end of its execution enable back P_S instrumentation
which this test disables at some point.
mysql-test/suite/perfschema/t/global_read_lock.test:
Adjusted test case to take into account that new GRL
implementation is based on MDL.
mysql-test/suite/perfschema/t/server_init.test:
Adjusted test case after replacing custom global read
lock implementation with one based on MDL and replacing
LOCK_event_metadata mutex with metadata lock.
mysql-test/suite/rpl/r/rpl_tmp_table_and_DDL.result:
Updated test results after prohibiting event DDL under
LOCK TABLES.
mysql-test/t/delayed.test:
Added test coverage for scenario which triggered assert in
metadata locking subsystem.
mysql-test/t/events_2.test:
Updated test case after prohibiting event DDL operations
under LOCK TABLES.
mysql-test/t/flush.test:
Added test coverage for bug #57006 "Deadlock between HANDLER
and FLUSH TABLES WITH READ LOCK".
mysql-test/t/flush_block_commit.test:
Adjusted test case after changing thread state name which
is used when COMMIT waits for FLUSH TABLES WITH READ LOCK
from "Waiting for release of readlock" to "Waiting for commit
lock".
mysql-test/t/flush_block_commit_notembedded.test:
Adjusted test case after changing thread state name which is
used when DML waits for FLUSH TABLES WITH READ LOCK. Now we
use "Waiting for global read lock" in this case.
mysql-test/t/flush_read_lock.test:
Added test coverage for various aspects of FLUSH TABLES WITH
READ LOCK functionality.
mysql-test/t/flush_read_lock_kill-master.opt:
We no longer need to use make_global_read_lock_block_commit_loop
debug tag in this test. Instead we rely on an appropriate
debug_sync point in MDL code.
mysql-test/t/flush_read_lock_kill.test:
Adjusted test case after replacing custom global read lock
implementation with one based on metadata locks. Use new
debug_sync point. Do not disable concurrent inserts as now
InnoDB we always use InnoDB table.
mysql-test/t/lock_multi.test:
Adjusted test case after changing thread state names which
are used when DML or DDL waits for FLUSH TABLES WITH READ
LOCK to "Waiting for global read lock".
mysql-test/t/mdl_sync.test:
Adjusted test case after replacing custom global read lock
implementation with one based on metadata locks. Replaced
usage of GRL-specific debug_sync's with appropriate sync
points in MDL subsystem. Updated thread state names which
are used when DDL waits for FTWRL.
mysql-test/t/trigger_notembedded.test:
Adjusted test case after changing thread state names which
are used when DML or DDL waits for FLUSH TABLES WITH READ
LOCK to "Waiting for global read lock".
sql/event_data_objects.cc:
Removed Event_queue_element::status/last_executed_changed
members and Event_queue_element::update_timing_fields()
method. We no longer use this class for updating mysql.events
once event is chosen for execution. Accesses to instances of
this class in scheduler thread require protection by
Event_queue::LOCK_event_queue mutex and we try to avoid
updating table while holding this lock.
sql/event_data_objects.h:
Removed Event_queue_element::status/last_executed_changed
members and Event_queue_element::update_timing_fields()
method. We no longer use this class for updating mysql.events
once event is chosen for execution. Accesses to instances of
this class in scheduler thread require protection by
Event_queue::LOCK_event_queue mutex and we try to avoid
updating table while holding this lock.
sql/event_db_repository.cc:
- Changed Event_db_repository methods to not release all
metadata locks once they are done updating mysql.events
table. This allows to keep metadata lock protecting
against GRL and lock protecting particular event around
until corresponding DDL statement is written to the binary
log.
- Removed logic for conditional update of "status" and
"last_executed" fields from update_timing_fields_for_event()
method. In the only case when this method is called now
"last_executed" is always modified and tracking change
of "status" is too much hassle.
sql/event_db_repository.h:
Removed logic for conditional update of "status" and
"last_executed" fields from Event_db_repository::
update_timing_fields_for_event() method.
In the only case when this method is called now "last_executed"
is always modified and tracking change of "status" field is
too much hassle.
sql/event_queue.cc:
Changed event scheduler code not to update mysql.events
table while holding Event_queue::LOCK_event_queue mutex.
Doing so led to a deadlock with a new GRL implementation.
This deadlock didn't occur with old implementation due to
fact that code acquiring protection against GRL ignored
pending GRL requests (which lead to GRL starvation).
One of goals of new implementation is to disallow GRL
starvation and so we have to solve problem with this
deadlock in a different way.
sql/events.cc:
Changed methods of Events class to acquire protection
against GRL while perfoming DDL statement and keep it
until statement is written to the binary log.
Unfortunately this step together with new GRL implementation
exposed deadlock involving Events::LOCK_event_metadata
and GRL. To solve it Events::LOCK_event_metadata mutex was
replaced with a metadata lock on event. As a side-effect
events DDL has to be prohibited under LOCK TABLES even in
cases when mysql.events table was explicitly locked for
write.
sql/events.h:
Replaced Events::LOCK_event_metadata mutex with a metadata
lock on event.
sql/ha_ndbcluster.cc:
Updated code after replacing custom global read lock
implementation with one based on MDL. Since MDL subsystem
should now be able to detect deadlocks involving metadata
locks and GRL there is no need for special handling of
active GRL.
sql/handler.cc:
Replaced custom implementation of global read lock with
one based on metadata locks. Consequently when doing
commit instead of calling method of Global_read_lock
class to acquire protection against GRL we simply acquire
IX in COMMIT namespace.
sql/lock.cc:
Replaced custom implementation of global read lock with
one based on metadata locks. This step allows to expose
wait for GRL to deadlock detector of MDL subsystem and
thus succesfully resolve deadlocks similar to one behind
bug #57006 "Deadlock between HANDLER and FLUSH TABLES
WITH READ LOCK". It also solves problem with GRL starvation
described in bug #54673 "It takes too long to get readlock
for 'FLUSH TABLES WITH READ LOCK'" since metadata locks used
by GRL give preference to FTWRL statement instead of DML
statements (if needed in future this can be changed to
fair scheduling).
Similar to old implementation of acquisition of GRL is
two-step. During the first step we block all concurrent
DML and DDL statements by acquiring global S metadata lock
(each DML and DDL statement acquires global IX lock for
its duration). During the second step we block commits by
acquiring global S lock in COMMIT namespace (commit code
acquires global IX lock in this namespace).
Note that unlike in old implementation acquisition of
protection against GRL in DML and DDL is semi-automatic.
We assume that any statement which should be blocked by GRL
will either open and acquires write-lock on tables or acquires
metadata locks on objects it is going to modify. For any such
statement global IX metadata lock is automatically acquired
for its duration.
To support this change:
- Global_read_lock::lock/unlock_global_read_lock and
make_global_read_lock_block_commit methods were changed
accordingly.
- Global_read_lock::wait_if_global_read_lock() and
start_waiting_global_read_lock() methods were dropped.
It is now responsibility of code acquiring metadata locks
opening tables to acquire protection against GRL by
explicitly taking global IX lock with statement duration.
- Global variables, mutex and condition variable used by
old implementation was removed.
- lock_routine_name() was changed to use statement duration for
its global IX lock. It was also renamed to lock_object_name()
as it now also used to take metadata locks on events.
- Global_read_lock::set_explicit_lock_duration() was added which
allows not to release locks used for GRL when leaving prelocked
mode.
sql/lock.h:
- Renamed lock_routine_name() to lock_object_name() and changed
its signature to allow its usage for events.
- Removed broadcast_refresh() function. It is no longer needed
with new GRL implementation.
sql/log_event.cc:
Release metadata locks with statement duration at the end
of processing legacy event for LOAD DATA. This ensures that
replication thread processing such event properly releases
its protection against global read lock.
sql/mdl.cc:
Changed MDL subsystem to support new MDL-based implementation
of global read lock.
Added COMMIT and EVENTS namespaces for metadata locks. Changed
thread state name for GLOBAL namespace to "Waiting for global
read lock".
Optimized MDL_map::find_or_insert() method to avoid taking
m_mutex mutex when looking up MDL_lock objects for GLOBAL
or COMMIT namespaces. We keep pre-created MDL_lock objects
for these namespaces around and simply return pointers to
these global objects when needed.
Changed MDL_lock/MDL_scoped_lock to properly handle
notification of insert delayed handler threads when FTWRL
takes global S lock.
Introduced concept of lock duration. In addition to locks with
transaction duration which work in the way which is similar to
how locks worked before (i.e. they are released at the end of
transaction), locks with statement and explicit duration were
introduced.
Locks with statement duration are automatically released at the
end of statement. Locks with explicit duration require explicit
release and obsolete concept of transactional sentinel.
* Changed MDL_request and MDL_ticket classes to support notion
of duration.
* Changed MDL_context to keep locks with different duration in
different lists. Changed code handling ticket list to take
this into account.
* Changed methods responsible for releasing locks to take into
account duration of tickets. Particularly public
MDL_context::release_lock() method now only can release
tickets with explicit duration (there is still internal
method which allows to specify duration). To release locks
with statement or transaction duration one have to use
release_statement/transactional_locks() methods.
* Concept of savepoint for MDL subsystem now has to take into
account locks with statement duration. Consequently
MDL_savepoint class was introduced and methods working with
savepoints were updated accordingly.
* Added methods which allow to set duration for one or all
locks in the context.
sql/mdl.h:
Changed MDL subsystem to support new MDL-based implementation
of global read lock.
Added COMMIT and EVENTS namespaces for metadata locks.
Introduced concept of lock duration. In addition to locks with
transaction duration which work in the way which is similar to
how locks worked before (i.e. they are released at the end of
transaction), locks with statement and explicit duration were
introduced.
Locks with statement duration are automatically released at the
end of statement. Locks with explicit duration require explicit
release and obsolete concept of transactional sentinel.
* Changed MDL_request and MDL_ticket classes to support notion
of duration.
* Changed MDL_context to keep locks with different duration in
different lists. Changed code handling ticket list to take
this into account.
* Changed methods responsible for releasing locks to take into
account duration of tickets. Particularly public
MDL_context::release_lock() method now only can release
tickets with explicit duration (there is still internal
method which allows to specify duration). To release locks
with statement or transaction duration one have to use
release_statement/transactional_locks() methods.
* Concept of savepoint for MDL subsystem now has to take into
account locks with statement duration. Consequently
MDL_savepoint class was introduced and methods working with
savepoints were updated accordingly.
* Added methods which allow to set duration for one or all
locks in the context.
sql/mysqld.cc:
Removed global mutex and condition variables which were used
by old implementation of GRL.
Also we no longer need to initialize Events::LOCK_event_metadata
mutex as it was replaced with metadata locks on events.
sql/mysqld.h:
Removed global variable, mutex and condition variables which
were used by old implementation of GRL.
sql/rpl_rli.cc:
When slave thread closes tables which were open for handling
of RBR events ensure that it releases global IX lock which
was acquired as protection against GRL.
sql/sp.cc:
Adjusted code to the new signature of lock_object/routine_name(),
to the fact that one now needs specify duration of lock when
initializing MDL_request and to the fact that savepoints for MDL
subsystem are now represented by MDL_savepoint class.
sql/sp_head.cc:
Ensure that statements in stored procedures release statement
metadata locks and thus release their protectiong against GRL
in proper moment in time.
Adjusted code to the fact that one now needs specify duration
of lock when initializing MDL_request.
sql/sql_admin.cc:
Adjusted code to the fact that one now needs specify duration
of lock when initializing MDL_request.
sql/sql_base.cc:
- Implemented support for new approach to acquiring protection
against global read lock. We no longer acquire such protection
explicitly on the basis of statement flags. Instead we always
rely on code which is responsible for acquiring metadata locks
on object to be changed acquiring this protection. This is
achieved by acquiring global IX metadata lock with statement
duration. Code doing this also responsible for checking that
current connection has no active GRL by calling an
Global_read_lock::can_acquire_protection() method.
Changed code in open_table() and lock_table_names()
accordingly.
Note that as result of this change DDL and DML on temporary
tables is always compatible with GRL (before it was
incompatible in some cases and compatible in other cases).
- To speed-up code acquiring protection against GRL introduced
m_has_protection_against_grl member in Open_table_context
class. It indicates that protection was already acquired
sometime during open_tables() execution and new attempts
can be skipped.
- Thanks to new GRL implementation calls to broadcast_refresh()
became unnecessary and were removed.
- Adjusted code to the fact that one now needs specify duration
of lock when initializing MDL_request and to the fact that
savepoints for MDL subsystem are now represented by
MDL_savepoint class.
sql/sql_base.h:
Adjusted code to the fact that savepoints for MDL subsystem are
now represented by MDL_savepoint class.
Also introduced Open_table_context::m_has_protection_against_grl
member which allows to avoid acquiring protection against GRL
while opening tables if such protection was already acquired.
sql/sql_class.cc:
Changed THD::leave_locked_tables_mode() after transactional
sentinel for metadata locks was obsoleted by introduction of
locks with explicit duration.
sql/sql_class.h:
- Adjusted code to the fact that savepoints for MDL subsystem
are now represented by MDL_savepoint class.
- Changed Global_read_lock class according to changes in
global read lock implementation:
* wait_if_global_read_lock and start_waiting_global_read_lock
are now gone. Instead code needing protection against GRL
has to acquire global IX metadata lock with statement
duration itself. To help it new can_acquire_protection()
was introduced. Also as result of the above change
m_protection_count member is gone too.
* Added m_mdl_blocks_commits_lock member to store metadata
lock blocking commits.
* Adjusted code to the fact that concept of transactional
sentinel was obsoleted by concept of lock duration.
- Removed CF_PROTECT_AGAINST_GRL flag as it is no longer
necessary. New GRL implementation acquires protection
against global read lock automagically when statement
acquires metadata locks on tables or other objects it
is going to change.
sql/sql_db.cc:
Adjusted code to the fact that one now needs specify duration
of lock when initializing MDL_request.
sql/sql_handler.cc:
Removed call to broadcast_refresh() function. It is no longer
needed with new GRL implementation.
Adjusted code after introducing duration concept for metadata
locks. Particularly to the fact transactional sentinel was
replaced with explicit duration.
sql/sql_handler.h:
Renamed mysql_ha_move_tickets_after_trans_sentinel() to
mysql_ha_set_explicit_lock_duration() after transactional
sentinel was obsoleted by locks with explicit duration.
sql/sql_insert.cc:
Adjusted code handling delaying inserts after switching to
new GRL implementation. Now connection thread initiating
delayed insert has to acquire global IX lock in addition
to metadata lock on table being inserted into. This IX lock
protects against GRL and similarly to SW lock on table being
inserted into has to be passed to handler thread in order to
avoid deadlocks.
sql/sql_lex.cc:
LEX::protect_against_global_read_lock member is no longer
necessary since protection against GRL is automatically
taken by code acquiring metadata locks/opening tables.
sql/sql_lex.h:
LEX::protect_against_global_read_lock member is no longer
necessary since protection against GRL is automatically
taken by code acquiring metadata locks/opening tables.
sql/sql_parse.cc:
- Implemented support for new approach to acquiring protection
against global read lock. We no longer acquire such protection
explicitly on the basis of statement flags. Instead we always
rely on code which is responsible for acquiring metadata locks
on object to be changed acquiring this protection. This is
achieved by acquiring global IX metadata lock with statement
duration. This lock is automatically released at the end of
statement execution.
- Changed implementation of CREATE/DROP PROCEDURE/FUNCTION not
to release metadata locks and thus protection against of GRL
in the middle of statement execution.
- Adjusted code to the fact that one now needs specify duration
of lock when initializing MDL_request and to the fact that
savepoints for MDL subsystem are now represented by
MDL_savepoint class.
sql/sql_prepare.cc:
Adjusted code to the to the fact that savepoints for MDL
subsystem are now represented by MDL_savepoint class.
sql/sql_rename.cc:
With new GRL implementation there is no need to explicitly
acquire protection against GRL before renaming tables.
This happens automatically in code which acquires metadata
locks on tables being renamed.
sql/sql_show.cc:
Adjusted code to the fact that one now needs specify duration
of lock when initializing MDL_request and to the fact that
savepoints for MDL subsystem are now represented by
MDL_savepoint class.
sql/sql_table.cc:
- With new GRL implementation there is no need to explicitly
acquire protection against GRL before dropping tables.
This happens automatically in code which acquires metadata
locks on tables being dropped.
- Changed mysql_alter_table() not to release lock on new table
name explicitly and to rely on automatic release of locks
at the end of statement instead. This was necessary since
now MDL_context::release_lock() is supported only for locks
for explicit duration.
sql/sql_trigger.cc:
With new GRL implementation there is no need to explicitly
acquire protection against GRL before changing table triggers.
This happens automatically in code which acquires metadata
locks on tables which triggers are to be changed.
sql/sql_update.cc:
Fix bug exposed by GRL testing. During prepare phase acquire
only S metadata locks instead of SW locks to keep prepare of
multi-UPDATE compatible with concurrent LOCK TABLES WRITE
and global read lock.
sql/sql_view.cc:
With new GRL implementation there is no need to explicitly
acquire protection against GRL before creating view.
This happens automatically in code which acquires metadata
lock on view to be created.
sql/sql_yacc.yy:
LEX::protect_against_global_read_lock member is no longer
necessary since protection against GRL is automatically
taken by code acquiring metadata locks/opening tables.
sql/table.cc:
Adjusted code to the fact that one now needs specify duration
of lock when initializing MDL_request.
sql/table.h:
Adjusted code to the fact that one now needs specify duration
of lock when initializing MDL_request.
sql/transaction.cc:
Replaced custom implementation of global read lock with
one based on metadata locks. Consequently when doing
commit instead of calling method of Global_read_lock
class to acquire protection against GRL we simply acquire
IX in COMMIT namespace.
Also adjusted code to the fact that MDL savepoint is now
represented by MDL_savepoint class.
sql_show.cc during rqg_info_schema test on Windows".
Ensure we do not access freed memory when filling
information_schema.views when one of the views
could not be properly opened.
mysql-test/r/information_schema.result:
Update results - a fix for Bug#56540.
mysql-test/t/information_schema.test:
Add a test case for Bug#56540
sql/sql_base.cc:
Push an error into the Diagnostics area
when we return an error.
This directs get_all_tables() to the execution
branch which doesn't involve 'process_table()'
when no table/view was opened.
sql/sql_show.cc:
Do not try to access underlying table fields
when opening of a view failed. The underlying
table is closed in that case, and accessing
its fields may lead to dereferencing a damaged
pointer.
|| thd->in_sub_stmt || (thd->state..
Don't rollback statement transactions if we are in a sub-statement.
This could for example happen for open_ltable() when opening the
general log during execution of a stored procedure.