Problem is not about intervals and doesn't actually cause 'full table scan'.
We have an optimization for DISTINCT when we have
'DISTINCT field_from_first_join_table' we don't need to read all the
rows from the JOIN-ed table if we found one conforming row.
It stopped working in 5.0 as we return NESTED_LOOP_OK if we came upon
that case in the evaluate_join_record() and that doesn't break the
recordreading loop in sub_select().
Fixed by returning NESTED_LOOP_NO_MORE_ROWS in this case.
type conversion.
Instead of copying of whole character string from a temporary
buffer, the server copied a short-living pointer to that string
into a long-living structure. That has been fixed.
but not collation.
The problem here was that text literals in a view were always
dumped with character set introducer. That lead to loosing
collation information.
The fix is to dump character set introducer only if it was
in the original query. That is now possible because there
is no problem any more of loss of character set of string
literals in views -- after WL#4052 the view is dumped
in the original character set.
Comparison of a BIGINT NOT NULL column with a constant arithmetic
expression that evaluates to NULL caused error 1048: "Column '...'
cannot be null".
Made convert_constant_item() check if the constant expression is NULL
before attempting to store it in a field. Attempts to store NULL in a
NOT NULL field caused query errors.
BETWEEN was more lenient with regard to what it accepted as a DATE/DATETIME
in comparisons than greater-than and less-than were. ChangeSet makes < >
comparisons similarly robust with regard to trailing garbage (" GMT-1")
and "missing" leading zeros. Now all three comparators behave similarly
in that they throw a warning for "junk" at the end of the data, but then
proceed anyway if possible. Before < > fell back on a string- (rather than
date-) comparison when a warning-condition was raised in the string-to-date
conversion. Now the fallback only happens on actual errors, while warning-
conditions still result in a warning being to delivered to the client.
variable in where clause.
Problem: the new_item() method of Item_uint used an incorrect
constructor. "new Item_uint(name, max_length)" calls
Item_uint::Item_uint(const char *str_arg, uint length) which assumes the
first argument to be the string representation of the value, not the
item's name. This could result in either a server crash or incorrect
results depending on usage scenarios.
Fixed by using the correct constructor in new_item():
Item_uint::Item_uint(const char *str_arg, longlong i, uint length).
tables or more
The problem was that the optimizer used the join buffer in cases when
the result set is ordered by filesort. This resulted in the ORDER BY
clause being ignored, and the records being returned in the order
determined by the order of matching records in the last table in join.
Fixed by relaxing the condition in make_join_readinfo() to take
filesort-ordered result sets into account, not only index-ordered ones.
all space column names.
The parser has been modified to check VIEW column names
with the check_column_name function and to report an error
on empty and all space column names (same as for TABLE
column names).
Inserting Data.
The problem was that under some circumstances Field class was not
properly initialized before calling create_length_to_internal_length()
function, which led to assert failure.
The fix is to do the proper initialization.
The user-visible problem was that under some circumstances
CREATE TABLE ... SELECT statement crashed the server or led
to wrong error message (wrong results).
A rule was introduced by the 5.1 part of the fix for bug 27531 to
prefer filesort over indexed ORDER BY when accessing all of the rows of a
table (because it's faster). This new rule was not accounting for the
presence of a LIMIT clause.
Fixed the condition for this rule so it will prefer filesort over
indexed ORDER BY only if no LIMIT.
The parser uses ulonglong to store the LIMIT number. This number
then is stored into a variable of type ha_rows. ha_rows is either
4 or 8 byte depending on the BIG_TABLES define from config.h
So an overflow may occur (and LIMIT becomes zero) while storing an
ulonglong value in ha_rows.
Fixed by :
1. Using the maximum possible value for ha_rows on overflow
2. Defining BIG_TABLES for the windows builds (to match the others)
Declaring an all space column name in the SELECT FROM DUAL or in a view
leads to misleading warning message:
"Leading spaces are removed from name ' '".
The Item::set_name method has been modified to raise warnings like
"Name ' ' has become ''" in case of the truncation of an all
space identifier to an empty string identifier instead of the
"Leading spaces are removed from name ' '" warning message.
The bug caused memory corruption for some queries with top OR level
in the WHERE condition if they contained equality predicates and
other sargable predicates in disjunctive parts of the condition.
The corruption happened because the upper bound of the memory
allocated for KEY_FIELD and SARGABLE_PARAM internal structures
containing info about potential lookup keys was calculated incorrectly
in some cases. In particular it was calculated incorrectly when the
WHERE condition was an OR formula with disjuncts being AND formulas
including equalities and other sargable predicates.
The SELECT query with more than 31 nested dependent SELECT queries returned
wrong result.
New error message has been added: ER_TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT.
It will be reported as: "Too high level of nesting for select".
- added join cache indication in EXPLAIN (Extra column).
- prefer filesort over full scan over
index for ORDER BY (because it's faster).
- when switching from REF to RANGE because
RANGE uses longer key turn off sort on
the head table only as the resulting
RANGE access is a candidate for join cache
and we don't want to disable it by sorting
on the first table only.
Added a test case.
The problem was fixed by the fix for bug #17379.
The problem was that because of some conditions
the optimizer always preferred range or full index
scan access methods to lookup access methods even
when the latter were much cheaper.
after single-row table substitution could lead to a wrong result set.
The bug happened because the function Item_field::replace_equal_field
erroniously assumed that any field included in a multiple equality
with a constant has been already substituted for this constant.
This not true for fields becoming constant after row substitutions
for constant tables.