- Fetch innodb_compression_level from the running server.Add the value
of innodb_compression_level in backup-my.cnf file during backup phase.
So that prepare can use the innodb_compression_level variable from
backup-my.cnf
Fix the warnings issued by GCC 8 -Wstringop-truncation
and -Wstringop-overflow in InnoDB and XtraDB.
This work is motivated by Jan Lindström. The patch mainly differs
from his original one as follows:
(1) We remove explicit initialization of stack-allocated string buffers.
The minimum amount of initialization that is needed is a terminating
NUL character.
(2) GCC issues a warning for invoking strncpy(dest, src, sizeof dest)
because if strlen(src) >= sizeof dest, there would be no terminating
NUL byte in dest. We avoid this problem by invoking strncpy() with
a limit that is 1 less than the buffer size, and by always writing
NUL to the last byte of the buffer.
(3) We replace strncpy() with memcpy() or strcpy() in those cases
when the result is functionally equivalent.
Note: fts_fetch_index_words() never deals with len==UNIV_SQL_NULL.
This was enforced by an assertion that limits the maximum length
to FTS_MAX_WORD_LEN. Also, the encoding that InnoDB uses for
the compressed fulltext index is not byte-order agnostic, that is,
InnoDB data files that use FULLTEXT INDEX are not portable between
big-endian and little-endian systems.
MariaDB data-at-rest encryption (innodb_encrypt_tables)
had repurposed the same unused data field that was repurposed
in MySQL 5.7 (and MariaDB 10.2) for the Split Sequence Number (SSN)
field of SPATIAL INDEX. Because of this, MariaDB was unable to
support encryption on SPATIAL INDEX pages.
Furthermore, InnoDB page checksums skipped some bytes, and there
are multiple variations and checksum algorithms. By default,
InnoDB accepts all variations of all algorithms that ever existed.
This unnecessarily weakens the page checksums.
We hereby introduce two more innodb_checksum_algorithm variants
(full_crc32, strict_full_crc32) that are special in a way:
When either setting is active, newly created data files will
carry a flag (fil_space_t::full_crc32()) that indicates that
all pages of the file will use a full CRC-32C checksum over the
entire page contents (excluding the bytes where the checksum
is stored, at the very end of the page). Such files will always
use that checksum, no matter what the parameter
innodb_checksum_algorithm is assigned to.
For old files, the old checksum algorithms will continue to be
used. The value strict_full_crc32 will be equivalent to strict_crc32
and the value full_crc32 will be equivalent to crc32.
ROW_FORMAT=COMPRESSED tables will only use the old format.
These tables do not support new features, such as larger
innodb_page_size or instant ADD/DROP COLUMN. They may be
deprecated in the future. We do not want an unnecessary
file format change for them.
The new full_crc32() format also cleans up the MariaDB tablespace
flags. We will reserve flags to store the page_compressed
compression algorithm, and to store the compressed payload length,
so that checksum can be computed over the compressed (and
possibly encrypted) stream and can be validated without
decrypting or decompressing the page.
In the full_crc32 format, there no longer are separate before-encryption
and after-encryption checksums for pages. The single checksum is
computed on the page contents that is written to the file.
We do not make the new algorithm the default for two reasons.
First, MariaDB 10.4.2 was a beta release, and the default values
of parameters should not change after beta. Second, we did not
yet implement the full_crc32 format for page_compressed pages.
This will be fixed in MDEV-18644.
This is joint work with Marko Mäkelä.
log_group_read_log_seg(): Always return false when returning
before reading end_lsn.
xtrabackup_copy_logfile(): On error, indicate whether
a corrupt log record was encountered.
Only xtrabackup_copy_logfile() in Mariabackup cared about the
return value of the function. InnoDB crash recovery was not
affected by this bug.
The assertion happens under BACKUP STAGE BLOCK_COMMIT, when a DDL on a
temporary table (#sql-xxx) is found.
Apparently, assumption that all DDLs are blocked under FTWRL does not
hold for BACKUP STAGE, and temporary tables can still have ALTERs
The fix is to relax the assertion, and only check for opt_no_lock if
backup is *really* inconsistent, i.e either optimized DDL or CREATE/RENAME
are done on the tables that were not skipped during backup.
The variable is obsolete.
In mariabackup --backup, encryption plugin loading code sets the value
this parameter to the same as in server.
In mariabackup --prepare, no new redo log is generated,
and xtrabackup_logfile is removed after it anyway.
MySQL 5.7 introduced the class page_size_t and increased the size of
buffer pool page descriptors by introducing this object to them.
Maybe the intention of this exercise was to prepare for a future
where the buffer pool could accommodate multiple page sizes.
But that future never arrived, not even in MySQL 8.0. It is much
easier to manage a pool of a single page size, and typically all
storage devices of an InnoDB instance benefit from using the same
page size.
Let us remove page_size_t from MariaDB Server. This will make it
easier to remove support for ROW_FORMAT=COMPRESSED (or make it a
compile-time option) in the future, just by removing various
occurrences of zip_size.
Fix one more bug in "DDL redo" phase in prepare
If table was renamed, and then new table was created with the old name,
prepare can be confused, and .ibd can end up with wrong name.
Fix the order of how DDL fixup is applied , once again - ".new" files
should be processed after renames.
If, during backup
1) Innodb table is dropped (after being copied to backup) and then
2) Before backup finished, another Innodb table is renamed, and new name
is the name of the dropped table in 1)
then, --prepare fails with assertion, as DDL fixup code in prepare
did not handle this specific case.
The fix is to process drops before renames, in prepare DDL-"redo" phase.