This patch fixes not only the assertion failure in the function
Field_iterator_table_ref::set_field_iterator() but also:
- fixes the problem of forced materialization of derived tables used
in subqueries contained in WHERE clauses of single-table and multi-table
UPDATE and DELETE statements
- fixes the problem of MDEV-17954 that prevented execution of multi-table
DELETE statements if they use in their WHERE clauses references to
the tables that are updated.
The patch must be considered a complement to the patch for MDEV-28883.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
Do not set any flags in the items for constant subformulas TRUE/FALSE when
checking pushability of a formula into a view. Occurrences of these
subformulas can be ignored when checking pushability of the formula.
At the same time the items used for these constants became immutable
starting from version 10.7.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
This includes all test changes from
"Changing all cost calculation to be given in milliseconds"
and forwards.
Some of the things that caused changes in the result files:
- As part of fixing tests, I added 'echo' to some comments to be able to
easier find out where things where wrong.
- MATERIALIZED has now a higher cost compared to X than before. Because
of this some MATERIALIZED types have changed to DEPENDEND SUBQUERY.
- Some test cases that required MATERIALIZED to repeat a bug was
changed by adding more rows to force MATERIALIZED to happen.
- 'Filtered' in SHOW EXPLAIN has in many case changed from 100.00 to
something smaller. This is because now filtered also takes into
account the smallest possible ref access and filters, even if they
where not used. Another reason for 'Filtered' being smaller is that
we now also take into account implicit filtering done for subqueries
using FIRSTMATCH.
(main.subselect_no_exists_to_in)
This is caluculated in best_access_path() and stored in records_out.
- Table orders has changed because more accurate costs.
- 'index' and 'ALL' for small tables has changed to use 'range' or
'ref' because of optimizer_scan_setup_cost.
- index can be changed to 'range' as 'range' optimizer assumes we don't
have to read the blocks from disk that range optimizer has already read.
This can be confusing in the case where there is no obvious where clause
but instead there is a hidden 'key_column > NULL' added by the optimizer.
(main.subselect_no_exists_to_in)
- Scan on primary clustered key does not report 'Using Index' anymore
(It's a table scan, not an index scan).
- For derived tables, the number of rows is now 100 instead of 2,
which can be seen in EXPLAIN.
- More tests have "Using index for group by" as the cost of this
optimization is now more correct (lower).
- A primary key could be preferred for a normal key, even if it would
access more rows, as it's faster to do 1 lokoup and 3 'index_next' on a
clustered primary key than one lookup trough a secondary.
(main.stat_tables_innodb)
Notes:
- There was a 4.7% more calls to best_extension_by_limited_search() in
the main.greedy_optimizer test. However examining the test results
it looked that the plans where slightly better (eq_ref where more
chained together) so I assume this is ok.
- I have verified a few test cases where there was notable/unexpected
changes in the plan and in all cases the new optimizer plans where
faster. (main.greedy_optimizer and some others)
One effect of this change in the test suite is that tests with very few
rows changed to use sub queries instead of materialization. This is
correct and expected as for these the materialization overhead is too high.
A lot of tests where fixed to still use materialization by adding a
few rows to the tables (most tests has only 2-3 rows and are thus easily
affected when cost computations are changed).
Other things:
- Added more variables to TMPTABLE_COSTS for better cost calculation
- Added cost of copying rows to TMPTABLE_COSTS lookup and write
- Added THD::optimizer_cache_hit_ratio for easier cost calculations
- Added DISK_FAST_READ_SIZE to be used when calculating costs when
reading big blocks from a disk
Before this patch, when calculating the cost of fetching and using a
row/key from the engine, we took into account the cost of finding a
row or key from the engine, but did not consistently take into account
index only accessed, clustered key or covered keys for all access
paths.
The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently
considered in best_access_path(). TIME_FOR_COMPARE was used in
calculation in other places, like greedy_search(), but was in some
cases (like scans) done an a different number of rows than was
accessed.
The cost calculation of row and index scans didn't take into account
the number of rows that where accessed, only the number of accepted
rows.
When using a filter, the cost of index_only_reads and cost of
accessing and disregarding 'filtered rows' where not taken into
account, which made filters cost less than there actually where.
To remedy the above, the following key & row fetch related costs
has been added:
- The cost of fetching and using a row is now split into different costs:
- key + Row fetch cost (as before) but multiplied with the variable
'optimizer_cache_cost' (default to 0.5). This allows the user to
tell the optimizer the likehood of finding the key and row in the
engine cache.
- ROW_COPY_COST, The cost copying a row from the engine to the
sql layer or creating a row from the join_cache to the record
buffer. Mostly affects table scan costs.
- ROW_LOOKUP_COST, the cost of fetching a row by rowid.
- KEY_COPY_COST the cost of finding the next key and copying it from
the engine to the SQL layer. This is used when we calculate the cost
index only reads. It makes index scans more expensive than before if
they cover a lot of rows. (main.index_merge_myisam)
- KEY_LOOKUP_COST, the cost of finding the first key in a range.
This replaces the old define IDX_LOOKUP_COST, but with a higher cost.
- KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid).
when doing a index scan and comparing the rowid to the filter.
Before this cost was assumed to be 0.
All of the above constants/variables are now tuned to be somewhat in
proportion of executing complexity to each other. There is tuning
need for these in the future, but that can wait until the above are
made user variables as that will make tuning much easier.
To make the usage of the above easy, there are new (not virtual)
cost calclation functions in handler:
- ha_read_time(), like read_time(), but take optimizer_cache_cost into
account.
- ha_read_and_copy_time(), like ha_read_time() but take into account
ROW_COPY_TIME
- ha_read_and_compare_time(), like ha_read_and_copy_time() but take
TIME_FOR_COMPARE into account.
- ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST
into account. This is used with filesort where we don't need
to execute the WHERE clause again.
- ha_keyread_time(), like keyread_time() but take
optimizer_cache_cost into account.
- ha_keyread_and_copy_time(), like ha_keyread_time(), but add
KEY_COPY_COST.
- ha_key_scan_time(), like key_scan_time() but take
optimizer_cache_cost nto account.
- ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add
KEY_COPY_COST & TIME_FOR_COMPARE.
I also added some setup costs for doing different types of scans and
creating temporary tables (on disk and in memory). This encourages
the optimizer to not use these for simple 'a few row' lookups if
there are adequate key lookup strategies.
- TABLE_SCAN_SETUP_COST, cost of starting a table scan.
- INDEX_SCAN_SETUP_COST, cost of starting an index scan.
- HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory
temporary table.
- DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary
table.
When calculating cost of fetching ranges, we had a cost of
IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is
now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) *
optimizer_cache_cost', which matches the cost we use for 'ref' and
other key lookups. The effect is that the cost is now a bit higher
when we have many ranges for a key.
Allmost all calculation with TIME_FOR_COMPARE is now done in
best_access_path(). 'JOIN::read_time' now includes the full
cost for finding the rows in the table.
In the result files, many of the changes are now again close to what
they where before the "Update cost for hash and cached joins" commit,
as that commit didn't fix the filter cost (too complex to do
everything in one commit).
The above changes showed a lot of a lot of inconsistencies in
optimizer cost calculation. The main objective with the other changes
was to do calculation as similar (and accurate) as possible and to make
different plans more comparable.
Detailed list of changes:
- Calculate index_only_cost consistently and correctly for all scan
and ref accesses. The row fetch_cost and index_only_cost now
takes into account clustered keys, covered keys and index
only accesses.
- cost_for_index_read now returns both full cost and index_only_cost
- Fixed cost calculation of get_sweep_read_cost() to match other
similar costs. This is bases on the assumption that data is more
often stored on SSD than a hard disk.
- Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST.
- Some scan cost estimates did not take into account
TIME_FOR_COMPARE. Now all scan costs takes this into
account. (main.show_explain)
- Added session variable optimizer_cache_hit_ratio (default 50%). By
adjusting this on can reduce or increase the cost of index or direct
record lookups. The effect of the default is that key lookups is now
a bit cheaper than before. See usage of 'optimizer_cache_cost' in
handler.h.
- JOIN_TAB::scan_time() did not take into account index only scans,
which produced a wrong cost when index scan was used. Changed
JOIN_TAB:::scan_time() to take into consideration clustered and
covered keys. The values are now cached and we only have to call
this function once. Other calls are changed to use the cached
values. Function renamed to JOIN_TAB::estimate_scan_time().
- Fixed that most index cost calculations are done the same way and
more close to 'range' calculations. The cost is now lower than
before for small data sets and higher for large data sets as we take
into account how many keys are read (main.opt_trace_selectivity,
main.limit_rows_examined).
- Ensured that index_scan_cost() ==
range(scan_of_all_rows_in_table_using_one_range) +
MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there
is choice of doing a full index scan and a range-index scan over
almost the whole table then index scan will be preferred (no
range-read setup cost). (innodb.innodb, main.show_explain,
main.range)
- Fixed the EQ_REF and REF takes into account clustered and covered
keys. This changes some plans to use covered or clustered indexes
as these are much cheaper. (main.subselect_mat_cost,
main.state_tables_innodb, main.limit_rows_examined)
- Rowid filter setup cost and filter compare cost now takes into
account fetching and checking the rowid (KEY_NEXT_FIND_COST).
(main.partition_pruning heap.heap_btree main.log_state)
- Added KEY_NEXT_FIND_COST to
Range_rowid_filter_cost_info::lookup_cost to account of the time
to find and check the next key value against the container
- Introduced ha_keyread_time(rows) that takes into account finding
the next row and copying the key value to 'record'
(KEY_COPY_COST).
- Introduced ha_key_scan_time() for calculating an index scan over
all rows.
- Added IDX_LOOKUP_COST to keyread_time() as a startup cost.
- Added index_only_fetch_cost() as a convenience function to
OPT_RANGE.
- keyread_time() cost is slightly reduced to prefer shorter keys.
(main.index_merge_myisam)
- All of the above caused some index_merge combinations to be
rejected because of cost (main.index_intersect). In some cases
'ref' where replaced with index_merge because of the low
cost calculation of get_sweep_read_cost().
- Some index usage moved from PRIMARY to a covering index.
(main.subselect_innodb)
- Changed cost calculation of filter to take KEY_LOOKUP_COST and
TIME_FOR_COMPARE into account. See sql_select.cc::apply_filter().
filter parameters and costs are now written to optimizer_trace.
- Don't use matchings_records_in_range() to try to estimate the number
of filtered rows for ranges. The reason is that we want to ensure
that 'range' is calculated similar to 'ref'. There is also more work
needed to calculate the selectivity when using ranges and ranges and
filtering. This causes filtering column in EXPLAIN EXTENDED to be
100.00 for some cases where range cannot use filtering.
(main.rowid_filter)
- Introduced ha_scan_time() that takes into account the CPU cost of
finding the next row and copying the row from the engine to
'record'. This causes costs of table scan to slightly increase and
some test to changed their plan from ALL to RANGE or ALL to ref.
(innodb.innodb_mysql, main.select_pkeycache)
In a few cases where scan time of very small tables have lower cost
than a ref or range, things changed from ref/range to ALL.
(main.myisam, main.func_group, main.limit_rows_examined,
main.subselect2)
- Introduced ha_scan_and_compare_time() which is like ha_scan_time()
but also adds the cost of the where clause (TIME_FOR_COMPARE).
- Added small cost for creating temporary table for
materialization. This causes some very small tables to use scan
instead of materialization.
- Added checking of the WHERE clause (TIME_FOR_COMPARE) of the
accepted rows to ROR costs in get_best_ror_intersect()
- Removed '- 0.001' from 'join->best_read' and optimize_straight_join()
to ensure that the 'Last_query_cost' status variable contains the
same value as the one that was calculated by the optimizer.
- Take avg_io_cost() into account in handler::keyread_time() and
handler::read_time(). This should have no effect as it's 1.0 by
default, except for heap that overrides these functions.
- Some 'ref_or_null' accesses changed to 'range' because of cost
adjustments (main.order_by)
- Added scan type "scan_with_join_cache" for optimizer_trace. This is
just to show in the trace what kind of scan was used.
- When using 'scan_with_join_cache' take into account number of
preceding tables (as have to restore all fields for all previous
table combination when checking the where clause)
The new cost added is:
(row_combinations * ROW_COPY_COST * number_of_cached_tables).
This increases the cost of join buffering in proportion of the
number of tables in the join buffer. One effect is that full scans
are now done earlier as the cost is then smaller.
(main.join_outer_innodb, main.greedy_optimizer)
- Removed the usage of 'worst_seeks' in cost_for_index_read as it
caused wrong plans to be created; It prefered JT_EQ_REF even if it
would be much more expensive than a full table scan. A related
issue was that worst_seeks only applied to full lookup, not to
clustered or index only lookups, which is not consistent. This
caused some plans to use index scan instead of eq_ref (main.union)
- Changed federated block size from 4096 to 1500, which is the
typical size of an IO packet.
- Added costs for reading rows to Federated. Needed as there is no
caching of rows in the federated engine.
- Added ha_innobase::rnd_pos_time() cost function.
- A lot of extra things added to optimizer trace
- More costs, especially for materialization and index_merge.
- Make lables more uniform
- Fixed a lot of minor bugs
- Added 'trace_started()' around a lot of trace blocks.
- When calculating ORDER BY with LIMIT cost for using an index
the cost did not take into account the number of row retrivals
that has to be done or the cost of comparing the rows with the
WHERE clause. The cost calculated would be just a fraction of
the real cost. Now we calculate the cost as we do for ranges
and 'ref'.
- 'Using index for group-by' is used a bit more than before as
now take into account the WHERE clause cost when comparing
with 'ref' and prefer the method with fewer row combinations.
(main.group_min_max).
Bugs fixed:
- Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans,
like in optimize_straight_join() and greedy_search()
- Fixed bug in save_explain_data where we could test for the wrong
index when displaying 'Using index'. This caused some old plans to
show 'Using index'. (main.subselect_innodb, main.subselect2)
- Fixed bug in get_best_ror_intersect() where 'min_cost' was not
updated, and the cost we compared with was not the one that was
used.
- Fixed very wrong cost calculation for priority queues in
check_if_pq_applicable(). (main.order_by now correctly uses priority
queue)
- When calculating cost of EQ_REF or REF, we added the cost of
comparing the WHERE clause with the found rows, not all row
combinations. This made ref and eq_ref to be regarded way to cheap
compared to other access methods.
- FORCE INDEX cost calculation didn't take into account clustered or
covered indexes.
- JT_EQ_REF cost was estimated as avg_io_cost(), which is half the
cost of a JT_REF key. This may be true for InnoDB primary key, but
not for other unique keys or other engines. Now we use handler
function to calculate the cost, which allows us to handle
consistently clustered, covered keys and not covered keys.
- ha_start_keyread() didn't call extra_opt() if keyread was already
enabled but still changed the 'keyread' variable (which is wrong).
Fixed by not doing anything if keyread is already enabled.
- multi_range_read_info_cost() didn't take into account io_cost when
calculating the cost of ranges.
- fix_semijoin_strategies_for_picked_join_order() used the wrong
record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH
and SJ_OPT_LOOSE_SCAN.
- Hash joins didn't provide correct best_cost to the upper level, which
means that the cost for hash_joins more expensive than calculated
in best_access_path (a difference of 10x * TIME_OF_COMPARE).
This is fixed in the new code thanks to that we now include
TIME_OF_COMPARE cost in 'read_time'.
Other things:
- Added some 'if (thd->trace_started())' to speed up code
- Removed not used function Cost_estimate::is_zero()
- Simplified testing of HA_POS_ERROR in get_best_ror_intersect().
(No cost changes)
- Moved ha_start_keyread() from join_read_const_table() to join_read_const()
to enable keyread for all types of JT_CONST tables.
- Made a few very short functions inline in handler.h
Notes:
- In main.rowid_filter the join order of order and lineitem is swapped.
This is because the cost of doing a range fetch of lineitem(98 rows) is
almost as big as the whole join of order,lineitem. The filtering will
also ensure that we only have to do very small key fetches of the rows
in lineitem.
- main.index_merge_myisam had a few changes where we are now using
less keys for index_merge. This is because index scans are now more
expensive than before.
- handler->optimizer_cache_cost is updated in ha_external_lock().
This ensures that it is up to date per statements.
Not an optimal solution (for locked tables), but should be ok for now.
- 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of
filesort into consideration when table scan is chosen.
(main.myisam_explain_non_select_all)
- perfschema.table_aggregate_global_* has changed because an update
on a table with 1 row will now use table scan instead of key lookup.
TODO in upcomming commits:
- Fix selectivity calculation for ranges with and without filtering and
when there is a ref access but scan is chosen.
For this we have to store the lowest known value for
'accepted_records' in the OPT_RANGE structure.
- Change that records_read does not include filtered rows.
- test_if_cheaper_ordering() needs to be updated to properly calculate
costs. This will fix tests like main.order_by_innodb,
main.single_delete_update
- Extend get_range_limit_read_cost() to take into considering
cost_for_index_read() if there where no quick keys. This will reduce
the computed cost for ORDER BY with LIMIT in some cases.
(main.innodb_ext_key)
- Fix that we take into account selectivity when counting the number
of rows we have to read when considering using a index table scan to
resolve ORDER BY.
- Add new calculation for rnd_pos_time() where we take into account the
benefit of reading multiple rows from the same page.
This bug manifested itself in very rare situations when splitting
optimization was applied to a materialized derived table with group clause
by key over a constant meargeable derived table that was in inner part of
an outer join. In this case the used tables for the key to access the
split table incorrectly was evaluated to a not empty table map.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
This bug may affect the queries that uses a grouping derived table with
grouping list containing references to columns from different tables if
the optimizer decides to employ the split optimization for the derived
table. In some very specific cases it may affect queries with a grouping
derived table that refers only one base table.
This bug was caused by an improper fix for the bug MDEV-25128. The fix
tried to get rid of the equality conditions pushed into the where clause
of the grouping derived table T to which the split optimization had been
applied. The fix erroneously assumed that only those pushed equalities
that were used for ref access of the tables referenced by T were needed.
In fact the function remove_const() that figures out what columns from the
group list can be removed if the split optimization is applied can uses
other pushed equalities as well.
This patch actually provides a proper fix for MDEV-25128. Rather than
trying to remove invalid pushed equalities referencing the fields of SJM
tables with a look-up access the patch attempts not to push such equalities.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
This bug could affect queries with a grouping derived table containing
equalities in the where clause of its specification if the optimizer
chose to apply split optimization to access the derived table. In such
cases wrong results could be returned from the queries.
When the optimizer considers a possibility of using split optimization
to a derived table it injects equalities joining the derived table with
other tables into the where condition of the derived table. After the join
order for the execution using split optimization has been chosen as the
cheapest the injected equalities that are not used to access the derived
table are removed from the where condition of the derived table.
For this removal the optimizer looks through the conjuncts of the where
condition of the derived table, fetches the equalities and checks whether
they belong to the list of injected equalities.
As the injection of the list was performed just by the insertion of it
into the list of top level AND condition of the where condition some extra
conjuncts from the where condition could be automatically attached to the
end of the list of injected equalities. If such attached conjunct happened
to be an equality predicate it was removed from the where condition of the
derived table and thus lost for checking at the execution phase.
The bug has been fixed by injecting of a shallow copy of the list of the
pushed equalities rather than the list itself leaving the latter intact.
Approved by Oleksandr Byelkin <sanja@mariadb.com>
splittable derived
If one of joined tables of the processed query is a materialized derived
table (or view or CTE) with GROUP BY clause then under some conditions it
can be subject to split optimization. With this optimization new equalities
are injected into the WHERE condition of the SELECT that specifies this
derived table. The injected equalities are generated for all join orders
with which the split optimization can employed. After the best join order
has been chosen only certain of this equalities are really needed. The
others can be safely removed. If it's not done and some of injected
equalities involve expressions over semi-joins with look-up access then
the query may return a wrong result set.
This patch effectively removes equalities injected for split optimization
that are needed only at the optimization stage and not needed for execution.
Approved by serg@mariadb.com
This bug could cause a crash for any query that used a derived table/view/CTE
whose specification was a SELECT with a GROUP BY clause and a FROM list
containing 32 or more table references.
The problem appeared only in the cases when the splitting optimization
could be applied to such derived table/view/CTE.
Do not materialize a semi-join nest if it contains a materialized derived
table /view that potentially can be subject to the split optimization.
Splitting of materialization of such nest would help, but currently there
is no code to support this technique.
The bug manifested itself when executing a query with materialized
view/derived/CTE whose specification was a SELECT query contained
another materialized derived and impossible WHERE/HAVING condition
was detected for this SELECT.
As soon as such condition is detected the join structures of all
derived tables used in the SELECT are destroyed. So optimization
of the queries specifying these derived tables is impossible. Besides
it's not needed.
In 10.3 optimization of a materialized derived table is performed before
detection of impossible WHERE/HAVING condition in the embedding SELECT.
in the tree bb-10.4-mdev7486
The crash was caused because of the similar problem as in mdev-16765:
Item_cond::excl_dep_on_group_fields_for_having_pushdown() was missing.
Condition can be pushed from the HAVING clause into the WHERE clause
if it depends only on the fields that are used in the GROUP BY list
or depends on the fields that are equal to grouping fields.
Aggregate functions can't be pushed down.
How the pushdown is performed on the example:
SELECT t1.a,MAX(t1.b)
FROM t1
GROUP BY t1.a
HAVING (t1.a>2) AND (MAX(c)>12);
=>
SELECT t1.a,MAX(t1.b)
FROM t1
WHERE (t1.a>2)
GROUP BY t1.a
HAVING (MAX(c)>12);
The implementation scheme:
1. Extract the most restrictive condition cond from the HAVING clause of
the select that depends only on the fields that are used in the GROUP BY
list of the select (directly or indirectly through equalities)
2. Save cond as a condition that can be pushed into the WHERE clause
of the select
3. Remove cond from the HAVING clause if it is possible
The optimization is implemented in the function
st_select_lex::pushdown_from_having_into_where().
New test file having_cond_pushdown.test is created.
main.derived_cond_pushdown: Move all 10.3 tests to the end,
trim trailing white space, and add an "End of 10.3 tests" marker.
Add --sorted_result to tests where the ordering is not deterministic.
main.win_percentile: Add --sorted_result to tests where the
ordering is no longer deterministic.