The problem was that was_null and null_value variables was reset in each reexecution of IN subquery, but engine rerun only for non-constant subqueries.
Fixed checking constant in Item_equal sort.
Fix constant reporting in Item_subselect.
two tests still fail:
main.innodb_icp and main.range_vs_index_merge_innodb
call records_in_range() with both range ends being open
(which triggers an assert)
Problem: Some queries with subqueries and a HAVING clause that
consists only of a column not in the select or grouping lists causes
the server to crash.
During parsing, an Item_ref is constructed for the HAVING column. The
name of the column is resolved when JOIN::prepare calls fix_fields()
on its having clause. Since the column is not mentioned in the select
or grouping lists, a ref pointer is not found and a new Item_field is
created instead. The Item_ref is replaced by the Item_field in the
tree of HAVING clauses. Since the tree consists only of this item, the
pointer that is updated is JOIN::having. However,
st_select_lex::having still points to the Item_ref as the root of the
tree of HAVING clauses.
The bug is triggered when doing filesort for create_sort_index(). When
find_all_keys() calls select->cond->walk() it eventually reaches
Item_subselect::walk() where it continues to walk the having clauses
from lex->having. This means that it finds the Item_ref instead of the
new Item_field, and Item_ref::walk() tries to dereference the ref
pointer, which is still null.
The crash is reproducible only in 5.5, but the problem lies latent in
5.1 and trunk as well.
Fix: After calling fix_fields on the having clause in JOIN::prepare(),
set select_lex::having to point to the same item as JOIN::having.
This patch also fixes a bug in 5.1 and 5.5 that is triggered if the
query is executed as a prepared statement. The Item_field is created
in the runtime arena when the query is prepared, and the pointer to
the item is saved by st_select_lex::fix_prepare_information() and
brought back as a dangling pointer when the query is executed, after
the runtime arena has been reclaimed.
Fix: Backport fix from trunk that switches to the permanent arena
before calling Item_ref::fix_fields() in JOIN::prepare().
sql/item.cc:
Set context when creating Item_field.
sql/sql_select.cc:
Switch to permanent arena and update select_lex->having.
WHEN KILLING
Suppose there is a query waiting for a lock. If the user kills
this query, then "Got error -1 when reading table" error message
must not be logged in the server log file. Since this is a user
requested interruption, no spurious error message must be logged
in the server log. This patch will remove the error message from
the log.
approved by joh and tatjana
- In JOIN::exec(), make the having->update_used_tables() call before we've
made the JOIN::cleanup(full=true) call. The latter frees SJ-Materialization
structures, which correlated subquery predicate items attempt to walk afterwards.
This is a backport of the (unchaged) fix for MySQL bug #11764372, 57197.
Analysis:
When the outer query finishes its main execution and computes GROUP BY,
it needs to construct a new temporary table (and a corresponding JOIN) to
execute the last DISTINCT operation. At this point JOIN::exec calls
JOIN::join_free, which calls JOIN::cleanup -> TMP_TABLE_PARAM::cleanup
for both the outer and the inner JOINs. The call to the inner
TMP_TABLE_PARAM::cleanup sets copy_field = NULL, but not copy_field_end.
The final execution phase that computes the DISTINCT invokes:
evaluate_join_record -> end_write -> copy_funcs
The last function copies the results of all functions into the temp table.
copy_funcs walks over all functions in join->tmp_table_param.items_to_copy.
In this case items_to_copy contains both assignments to user variables.
The process of copying user variables invokes Item_func_set_user_var::check
which in turn re-evaluates the arguments of the user variable assignment.
This in turn triggers re-evaluation of the subquery, and ultimately
copy_field.
However, the previous call to TMP_TABLE_PARAM::cleanup for the subquery
already set copy_field to NULL but not its copy_field_end. This results
in a null pointer access, and a crash.
Fix:
Set copy_field_end and save_copy_field_end to null when deleting
copy fields in TMP_TABLE_PARAM::cleanup().
- make make_cond_after_sjm() correctly handle OR clauses where one branch refers to the semi-join table
while the other branch refers to the non-semijoin table.
The patch backports two patches from mysql 5.6:
- BUG#12640437: USING SQL_BUFFER_RESULT RESULTS IN A DIFFERENT QUERY OUTPUT
- Bug#12578908: SELECT SQL_BUFFER_RESULT OUTPUTS TOO MANY ROWS WHEN GROUP IS OPTIMIZED AWAY
Original comment:
-----------------
3714 Jorgen Loland 2012-03-01
BUG#12640437 - USING SQL_BUFFER_RESULT RESULTS IN A DIFFERENT
QUERY OUTPUT
For all but simple grouped queries, temporary tables are used to
resolve grouping. In these cases, the list of grouping fields is
stored in the temporary table and grouping is resolved
there (e.g. by adding a unique constraint on the involved
fields). Because of this, grouping is already done when the rows
are read from the temporary table.
In the case where a group clause may be optimized away, grouping
does not have to be resolved using a temporary table. However, if
a temporary table is explicitly requested (e.g. because the
SQL_BUFFER_RESULT hint is used, or the statement is
INSERT...SELECT), a temporary table is used anyway. In this case,
the temporary table is created with an empty group list (because
the group clause was optimized away) and it will therefore not
create groups. Since the temporary table does not take care of
grouping, JOIN::group shall not be set to false in
make_simple_join(). This was fixed in bug 12578908.
However, there is an exception where make_simple_join() should
set JOIN::group to false even if the query uses a temporary table
that was explicitly requested but is not strictly needed. That
exception is if the loose index scan access method (explain
says "Using index for group-by") is used to read into the
temporary table. With loose index scan, grouping is resolved
by the access method. This is exactly what happens in this bug.
The problem was in the code (update_const_equal_items()) which marked
index parts constant independently of the place where the equality was used.
In the test suite it marked t2_1.c part constant despite the fact that
it connected by OR with other expression.
Solution is to mark constant only top equalities connected with AND.
ORDER BY COUNT(*) LIMIT.
PROBLEM:
With respect to problem in the bug description, we
exhibit different behaviors for the two tables
presented, because innodb statistics (rec_per_key
in this case) are updated for the first table
and not so for the second one. As a result the
query plan gets changed in test_if_skip_sort_order
to use 'index' scan. Hence the difference in the
explain output. (NOTE: We can reproduce the problem
with first table by reducing the number of tuples
and changing the table structure)
The varied output w.r.t the query on the second table
is because of the result in the query plan change.
When a query plan is changed to use 'index' scan,
after the call to test_if_skip_sort_order, we set
keyread to TRUE immedietly. If for some reason
we drop this index scan for a filesort later on,
we fetch only the keys not the entire tuple.
As a result we would see junk values in the result set.
Following is the code flow:
Call test_if_skip_sort_order
-Choose an index to give sorted output
-If this is a covering index, set_keyread to TRUE
-Set the scan to INDEX scan
Call test_if_skip_sort_order second time
-Index is not chosen (note that we do not pass the
actual limit value second time. Hence we do not choose
index scan second time which in itself is a bug fixed
in 5.6 with WL#5558)
-goto filesort
Call filesort
-Create quick range on a different index
-Since keyread is set to TRUE, we fetch only the columns of
the index
-results in the required columns are not fetched
FIX:
Remove the call to set_keyread(TRUE) from
test_if_skip_sort_order. The access function which is
'join_read_first' or 'join_read_last' calls set_keyread anyways.
mysql-test/r/func_group_innodb.result:
Added test result for Bug#12713907
mysql-test/t/func_group_innodb.test:
Added test case for Bug#12713907
sql/sql_select.cc:
Remove the call to set_keyread as we do it from access
functions 'join_read_first' and 'join_read_last'
The previous patch for the bug (that erroneously identified the bug as
bug 972973 in its comment) was incorrect.
It turned out that the code that triggered the abort complain reported for
the bug was not needed at all.
When the function free_tmp_table deletes the handler object for
a temporary table the field TABLE::file for this table should be
set to NULL. Otherwise an assertion failure may occur.
Bug#13639204 64111: CRASH ON SELECT SUBQUERY WITH NON UNIQUE INDEX
The crash happened due to wrong calculation
of key length during creation of reference for
sort order index. The problem is that
keyuse->used_tables can have OUTER_REF_TABLE_BIT enabled
but used_tables parameter(create_ref_for_key() func) does
not have it. So key parts which have OUTER_REF_TABLE_BIT
are ommited and it could lead to incorrect key length
calculation(zero key length).
mysql-test/r/subselect_innodb.result:
test result
mysql-test/t/subselect_innodb.test:
test case
sql/sql_select.cc:
added OUTER_REF_TABLE_BIT to the used_tables parameter
for create_ref_for_key() function.
storage/innobase/handler/ha_innodb.cc:
added assertion, request from Inno team
storage/innodb_plugin/handler/ha_innodb.cc:
added assertion, request from Inno team
The main problem was a bug in CSV where it provided wrong statistics (it claimed the table was empty when it wasn't)
I also fixed wrong freeing of blob's in the CSV handler. (Any call to handler::read_first_row() on a CSV table with blobs would fail)
mysql-test/r/csv.result:
Added new test case
mysql-test/r/partition_innodb.result:
Updated test results after fixing bug with impossible partitions and const tables
mysql-test/t/csv.test:
Added new test case
sql/sql_select.cc:
Cleaned up code for handling of partitions.
Fixed also a bug where we didn't threat a table with impossible partitions as a const table.
storage/csv/ha_tina.cc:
Allocate blobroot onces.
- When doing join optimization, pre-sort the tables so that they mimic the execution
order we've had with 'semijoin=off'.
- That way, we will not get regressions when there are two query plans (the old and the
new) that have indentical costs but different execution times (because of factors that
the optimizer was not able to take into account).
- This is a regession introduced by fix for BUG#951937
- The problem was that there were scenarios where check_simple_equality() would create an
Item_equal object but would not call item_equal->set_context_field() on it.
- The fix was to add the missing calls.
- Fix equality propagation to work with SJM nests and OR clauses (full descirption of problem and
solution in the comment in the patch)
(The second commit with post-review fixes)
- Remove all references of MAX_TABLES from JOIN struct and make these dynamic
- Updated Join_plan_state to allocate just as many elements as it's needed
sql/opt_subselect.cc:
Optimized version of Join_plan_state
sql/sql_select.cc:
Set join->positions and join->best_positions dynamicly
Don't call update_virtual_fields() if table->vfield is not set.
sql/sql_select.h:
Remove all references of MAX_TABLES from JOIN struct and Join_plan_state and make these dynamic
If the first component of a ref key happened to be a constant appeared
after constant row substitution then no store_key element should be
created for such a component. Yet create_ref_for_key() erroneously could
create such an element that caused construction of invalid ref keys and
wrong results for some joins.
Do not call, directly or indirectly, SQL_SELECT::test_quick_select()
for derived materialized tables / views when optimizing joins referring
to these tables / views to get cost estimates of materialization.
The current code does not create B-tree indexes for materialized
derived tables / views. So now it's not possible to get any estimates
for ranges conditions over the results of the materialization.
The function mysql_derived_create() must take into account the fact
that array of the KEY structures specifying the keys over a derived
table / view may be moved after the optimization phase if the
derived table / view is materialized.
Added 'from_end' as extra parameter to Field::unpack() to detect wrong from data.
Change ha_archive::unpack_row() to detect wrong field lengths.
Replication code changed to detect wrong field information in events.
mysql-test/r/archive.result:
dded test case for lp:917689
sql/field.cc:
Added 'from_end' as extra parameter to Field::unpack() to detect wrong from data.
Removed not used 'unpack_key' functions.
sql/field.h:
Added 'from_end' as extra parameter to Field::unpack() to detect wrong from data.
Removed not used 'unpack_key' functions.
Removed some not needed unpack() functions.
sql/filesort.cc:
Added buffer end parameter to unpack_addon_fields()
sql/log_event.h:
Added end of buffer argument to unpack_row()
sql/log_event_old.cc:
Added end of buffer argument to unpack_row()
sql/log_event_old.h:
Added end of buffer argument to unpack_row()
sql/records.cc:
Added buffer end parameter to unpack_addon_fields()
sql/rpl_record.cc:
Added end of buffer argument to unpack_row()
Added detection of wrong field information in events
sql/rpl_record.h:
Added end of buffer argument to unpack_row()
sql/rpl_record_old.cc:
Added end of buffer argument to unpack_row()
Added detection of wrong field information in events
sql/rpl_record_old.h:
Added end of buffer argument to unpack_row()
sql/table.h:
Added buffer end parameter to unpack()
storage/archive/ha_archive.cc:
Change ha_archive::unpack_row() to detect wrong field lengths.
This fixes lp:917689
The function create_hj_key_for_table() that builds the descriptor of
the hash join key to access a table of a materialized subquery must
ignore any equi-join predicate depending on the tables not belonging
to the subquery.
This bug in the function JOIN::drop_unused_derived_keys() could
leave the internal structures for a materialized derived table
in an inconsistent state. This led to a not quite correct EXPLAIN
output when no additional key had been created to access the table.
It also may lead to more serious consequences: so, the test case
added with this fix caused a crash in mariadb-5.5.20.
This bug appeared after the patch for bug 939009 that in the
function merge_key_fields forgot to reset a proper value for
the val field in the result of the merge operation of the key
field created for a regular key access and the key field
created to look for a NULL key.
Adjusted the results of the test case for bug 939009 that
actually were incorrect.