Revert the dead code for MySQL 5.7 multi-master replication (GCS),
also known as
WL#6835: InnoDB: GCS Replication: Deterministic Deadlock Handling
(High Prio Transactions in InnoDB).
Also, make innodb_lock_schedule_algorithm=vats skip SPATIAL INDEX,
because the code does not seem to be compatible with them.
Add FIXME comments to some SPATIAL INDEX locking code. It looks
like Galera write-set replication might not work with SPATIAL INDEX.
This should affect debug builds only. Debug builds will check that
the status bits of ROW_FORMAT!=REDUNDANT records match the is_leaf
parameter.
The only observable change to non-debug should be the addition of
the is_leaf parameter to the function rec_copy_prefix_to_dtuple(),
and the removal of some calls to update the adaptive hash index
(it is only built for the leaf pages).
This change should have been made in MySQL 5.0.3, instead of
introducing the status flags in the ROW_FORMAT=COMPACT record header.
Define some page accessor functions inline in page0page.h,
reducing code duplication in page0page.ic.
Use page_rec_is_leaf() instead of page_is_leaf() where possible.
buf_page_print(): Remove the parameter 'flags',
and when a server abort is intended, perform that in the caller.
In this way, page corruption reports due to different reasons
can be distinguished better.
This is non-functional code refactoring that does not fix any
page corruption issues. The change is only made to avoid falsely
grouping together unrelated causes of page corruption.
Also, remove empty .ic files that were not removed by my MySQL commit.
Problem:
InnoDB used to support a compilation mode that allowed to choose
whether the function definitions in .ic files are to be inlined or not.
This stopped making sense when InnoDB moved to C++ in MySQL 5.6
(and ha_innodb.cc started to #include .ic files), and more so in
MySQL 5.7 when inline methods and functions were introduced
in .h files.
Solution:
Remove all references to UNIV_NONINL and UNIV_MUST_NOT_INLINE from
all files, assuming that the symbols are never defined.
Remove the files fut0fut.cc and ut0byte.cc which only mattered when
UNIV_NONINL was defined.
Also, implement MDEV-11027 a little differently from 5.5 and 10.0:
recv_apply_hashed_log_recs(): Change the return type back to void
(DB_SUCCESS was always returned).
Report progress also via systemd using sd_notifyf().
Define my_thread_id as an unsigned type, to avoid mismatch with
ulonglong. Change some parameters to this type.
Use size_t in a few more places.
Declare many flag constants as unsigned to avoid sign mismatch
when shifting bits or applying the unary ~ operator.
When applying the unary ~ operator to enum constants, explictly
cast the result to an unsigned type, because enum constants can
be treated as signed.
In InnoDB, change the source code line number parameters from
ulint to unsigned type. Also, make some InnoDB functions return
a narrower type (unsigned or uint32_t instead of ulint;
bool instead of ibool).
MySQL 5.7 allows temporary tables to be created in ROW_FORMAT=COMPRESSED.
The usefulness of this is questionable. WL#7899 in MySQL 8.0.0
prevents the creation of such compressed tables, so that all InnoDB
temporary tables will be located inside the predefined
InnoDB temporary tablespace.
Pick up and adjust some tests from MySQL 5.7 and 8.0.
dict_tf_to_fsp_flags(): Remove the parameter is_temp.
fsp_flags_init(): Remove the parameter is_temporary.
row_mysql_drop_temp_tables(): Remove. There cannot be any temporary
tables in InnoDB. (This never removed #sql* tables in the datadir
which were created by DDL.)
dict_table_t::dir_path_of_temp_table: Remove.
create_table_info_t::m_temp_path: Remove.
create_table_info_t::create_options_are_invalid(): Do not allow
ROW_FORMAT=COMPRESSED or KEY_BLOCK_SIZE for temporary tables.
create_table_info_t::innobase_table_flags(): Do not unnecessarily
prevent CREATE TEMPORARY TABLE with SPATIAL INDEX.
(MySQL 5.7 does allow this.)
fil_space_belongs_in_lru(): The only FIL_TYPE_TEMPORARY tablespace
is never subjected to closing least-recently-used files.
The InnoDB source code contains quite a few references to a closed-source
hot backup tool which was originally called InnoDB Hot Backup (ibbackup)
and later incorporated in MySQL Enterprise Backup.
The open source backup tool XtraBackup uses the full database for recovery.
So, the references to UNIV_HOTBACKUP are only cluttering the source code.
Thanks to Zhangyuan from Alibaba for pointing out this bug.
btr_page_empty(): When a clustered index root page is emptied,
preserve PAGE_ROOT_AUTO_INC. This would occur during a page split.
page_create_empty(): Preserve PAGE_ROOT_AUTO_INC when a clustered
index root page becomes empty. Use a faster method for writing
the field.
page_zip_copy_recs(): Reset PAGE_MAX_TRX_ID when copying
clustered index pages. We must clear the field when the root page
was a leaf page and it is being split, so that PAGE_MAX_TRX_ID
will continue to be 0 in clustered index non-root pages.
page_create_zip(): Add debug assertions for validating
PAGE_MAX_TRX_ID and PAGE_ROOT_AUTO_INC.
This should be functionally equivalent to WL#6204 in MySQL 8.0.0, with
the notable difference that the file format changes are limited to
repurposing a previously unused data field in B-tree pages.
For persistent InnoDB tables, write the last used AUTO_INCREMENT
value to the root page of the clustered index, in the previously
unused (0) PAGE_MAX_TRX_ID field, now aliased as PAGE_ROOT_AUTO_INC.
Unlike some other previously unused InnoDB data fields, this one was
actually always zero-initialized, at least since MySQL 3.23.49.
The writes to PAGE_ROOT_AUTO_INC are protected by SX or X latch on the
root page. The SX latch will allow concurrent read access to the root
page. (The field PAGE_ROOT_AUTO_INC will only be read on the
first-time call to ha_innobase::open() from the SQL layer. The
PAGE_ROOT_AUTO_INC can only be updated when executing SQL, so
read/write races are not possible.)
During INSERT, the PAGE_ROOT_AUTO_INC is updated by the low-level
function btr_cur_search_to_nth_level(), adding no extra page
access. [Adaptive hash index lookup will be disabled during INSERT.]
If some rare UPDATE modifies an AUTO_INCREMENT column, the
PAGE_ROOT_AUTO_INC will be adjusted in a separate mini-transaction in
ha_innobase::update_row().
When a page is reorganized, we have to preserve the PAGE_ROOT_AUTO_INC
field.
During ALTER TABLE, the initial AUTO_INCREMENT value will be copied
from the table. ALGORITHM=COPY and online log apply in LOCK=NONE will
update PAGE_ROOT_AUTO_INC in real time.
innodb_col_no(): Determine the dict_table_t::cols[] element index
corresponding to a Field of a non-virtual column.
(The MySQL 5.7 implementation of virtual columns breaks the 1:1
relationship between Field::field_index and dict_table_t::cols[].
Virtual columns are omitted from dict_table_t::cols[]. Therefore,
we must translate the field_index of AUTO_INCREMENT columns into
an index of dict_table_t::cols[].)
Upgrade from old data files:
By default, the AUTO_INCREMENT sequence in old data files would appear
to be reset, because PAGE_MAX_TRX_ID or PAGE_ROOT_AUTO_INC would contain
the value 0 in each clustered index page. In new data files,
PAGE_ROOT_AUTO_INC can only be 0 if the table is empty or does not contain
any AUTO_INCREMENT column.
For backward compatibility, we use the old method of
SELECT MAX(auto_increment_column) for initializing the sequence.
btr_read_autoinc(): Read the AUTO_INCREMENT sequence from a new-format
data file.
btr_read_autoinc_with_fallback(): A variant of btr_read_autoinc()
that will resort to reading MAX(auto_increment_column) for data files
that did not use AUTO_INCREMENT yet. It was manually tested that during
the execution of innodb.autoinc_persist the compatibility logic is
not activated (for new files, PAGE_ROOT_AUTO_INC is never 0 in nonempty
clustered index root pages).
initialize_auto_increment(): Replaces
ha_innobase::innobase_initialize_autoinc(). This initializes
the AUTO_INCREMENT metadata. Only called from ha_innobase::open().
ha_innobase::info_low(): Do not try to lazily initialize
dict_table_t::autoinc. It must already have been initialized by
ha_innobase::open() or ha_innobase::create().
Note: The adjustments to class ha_innopart were not tested, because
the source code (native InnoDB partitioning) is not being compiled.
Contains also
MDEV-10547: Test multi_update_innodb fails with InnoDB 5.7
The failure happened because 5.7 has changed the signature of
the bool handler::primary_key_is_clustered() const
virtual function ("const" was added). InnoDB was using the old
signature which caused the function not to be used.
MDEV-10550: Parallel replication lock waits/deadlock handling does not work with InnoDB 5.7
Fixed mutexing problem on lock_trx_handle_wait. Note that
rpl_parallel and rpl_optimistic_parallel tests still
fail.
MDEV-10156 : Group commit tests fail on 10.2 InnoDB (branch bb-10.2-jan)
Reason: incorrect merge
MDEV-10550: Parallel replication can't sync with master in InnoDB 5.7 (branch bb-10.2-jan)
Reason: incorrect merge
Update InnoDB to 5.6.14
Apply MySQL-5.6 hack for MySQL Bug#16434374
Move Aria-only HA_RTREE_INDEX from my_base.h to maria_def.h (breaks an assert in InnoDB)
Fix InnoDB memory leak