UNIQUE (eq-ref) lookups result in table being considered as a "constant" table.
Queries that consist of only constant tables are processed in do_select() in a
special way that doesn't invoke evaluate_join_record(), and therefore doesn't
increase the counters join->examined_rows and join->thd->row_count.
The patch increases these counters in this special case.
NOTICE:
This behavior seems to contradict what the documentation says in Sect. 5.11.4:
"Queries handled by the query cache are not added to the slow query log, nor
are queries that would not benefit from the presence of an index because the
table has zero rows or one row."
No test case in 5.0 as issue shows only in slow query log, and other counters
can give subtly different values (with regard to counting in create_sort_index(),
synthetic rows in ROLLUP, etc.).
The bug is a regression introduced by the fix for bug30596. The problem
was that in cases when groups in GROUP BY correspond to only one row,
and there is ORDER BY, the GROUP BY was removed and the ORDER BY
rewritten to ORDER BY <group_by_columns> without checking if the
columns in GROUP BY and ORDER BY are compatible. This led to
incorrect ordering of the result set as it was sorted using the
GROUP BY columns. Additionaly, the code discarded ASC/DESC modifiers
from ORDER BY even if its columns were compatible with the GROUP BY
ones.
This patch fixes the regression by checking if ORDER BY columns form a
prefix of the GROUP BY ones, and rewriting ORDER BY only in that case,
preserving the ASC/DESC modifiers. That check is sufficient, since the
GROUP BY columns contain a unique index.
and auto_increment keys
Problems:
1. ALTER TABLE ... ORDER BY... doesn't make sence if there's a
user-defined clustered index in the table.
2. using a secondary index is slower than using a clustered one
for a table scan.
Fixes:
1. raise a warning.
2. use the clustered index.
tables or more
The problem was that the optimizer used the join buffer in cases when
the result set is ordered by filesort. This resulted in the ORDER BY
clause being ignored, and the records being returned in the order
determined by the order of matching records in the last table in join.
Fixed by relaxing the condition in make_join_readinfo() to take
filesort-ordered result sets into account, not only index-ordered ones.
The fix for bug 31148 is not correct. It does not
have a relation to the problem described in this bug.
And removing the fix will not make the bug to re-appear.
Fixed the bug #31974 by removing the fix for bug 31148
and adding a test case.
The HAVING clause is subject to the same rules as the SELECT list
about using aggregated and non-aggregated columns.
But this was not enforced when processing implicit grouping from
using aggregate functions.
Fixed by performing the same checks for HAVING as for SELECT.
Assertion `table->key_read == 0' failed.
The problem was that key_read on a table in a sub-select was not
properly reset. That happens because the code responsible for that
is copy&pasted all around the server. In some place, it was obviously
forgotten to be pasted.
The fix is to reset key_read properly.
CPUs / Intel's ICC compile
The bug is a combination of two problems:
1. IA64/ICC MySQL binaries use glibc's qsort(), not the one in mysys.
2. The order relation implemented by join_tab_cmp() is not transitive,
i.e. it is possible to choose such a, b and c that (a < b) && (b < c)
but (c < a). This implies that result of a sort using the relation
implemented by join_tab_cmp() depends on the order in which
elements are compared, i.e. the result is implementation-specific. Since
choose_plan() uses qsort() to pre-sort the
join tables using join_tab_cmp() as a compare function, the results of
the sorting may vary depending on qsort() implementation.
It is neither possible nor important to implement a better ordering
algorithm in join_tab_cmp(). Therefore the only way to fix it is to
force our own qsort() to be used by renaming it to my_qsort(), so we don't depend
on linker to decide that.
This patch also "fixes" bug #20530: qsort redefinition violates the
standard.
- Reserver namespace and place in frm for TABLE_CHECKSUM and PAGE_CHECKSUM create options
- Added syncing of directory when creating .frm files
- Portability fixes
- Added missing cast that could cause bugs
- Code cleanups
- Made some bit functions inline
- Moved things out of myisam.h to my_handler.h to make them more accessable
- Renamed some myisam variables and defines to make them more globaly usable (as they are used outside of MyISAM)
- Fixed bugs in error conditions
- Use compiler time asserts instead of run time
- Fixed indentation
HA_EXTRA_PREPARE_FOR_DELETE -> HA_EXTRA_PREPARE_FOR_DROP as the old name was wrong
(Added a define for old value to ensure we don't break any old code)
Added HA_EXTRA_PREPARE_FOR_RENAME as a signal for rename (before we used a DROP signal which is wrong)
- Initialize error messages early to get better errors when mysqld or an engine fails to start
- Fix windows bug that query_performance_frequency was not initialized if registry code failed
- thread_stack -> my_thread_stack_size
bitmap_is_set(table->write_set, fiel
Problem: creating a temporary table we allocate the group buffer if needed
followed by table bitmaps (see create_tmp_table()). Reserving less memory for
the group buffer than actually needed (used) for values retrieval may lead
to overlapping with followed bitmaps in the memory pool that in turn leads
to unpredictable consequences.
As we use Item->max_length sometimes to calculate group buffer size,
it must be set to proper value. In this particular case
Item_datetime_typecast::max_length is too small.
Another problem is that we use max_length to calculate the group buffer
key length for items represented as DATE/TIME fields which is superfluous.
Fix: set Item_datetime_typecast::max_length properly,
accurately calculate the group buffer key length for items
represented as DATE/TIME fields in the buffer.
A rule was introduced by the 5.1 part of the fix for bug 27531 to
prefer filesort over indexed ORDER BY when accessing all of the rows of a
table (because it's faster). This new rule was not accounting for the
presence of a LIMIT clause.
Fixed the condition for this rule so it will prefer filesort over
indexed ORDER BY only if no LIMIT.
when used in a VIEW.
The problem was that wrong function (create_tmp_from_item())
was used to create a temporary field for Item_func_sp.
The fix is to use create_tmp_from_field().
The change_to_use_tmp_fields function leaves the orig_table member of an
expression's tmp table field filled for the new Item_field being created.
Later orig_table is used by the Field::make_field function to provide some
info about original table and field name to a user. This is ok for a field
but for an expression it should be empty.
The change_to_use_tmp_fields function now resets orig_table member of
an expression's tmp table field to prevent providing a wrong info to a user.
The Field::make_field function now resets the table_name and the org_col_name
variables when the orig_table is set to 0.
The optimizer takes different execution paths during EXPLAIN than SELECT,
this fix relates only to EXPLAIN, hence no behavior changes.
The test of sort keys for ORDER BY was prohibited from considering keys
that were mentioned in IGNORE KEYS FOR ORDER BY. This led to two
inconsistencies: One was that IGNORE INDEX FOR GROUP BY and
IGNORE INDEX FOR ORDER BY gave apparently different EXPLAINs; the latter
erroneously claimed to do filesort. The second inconsistency
is that the test of sort keys is called twice, finding a sort key the first
time but not the second time, leading to the mentioned filesort.
Fixed by making the test of sort keys consider all enabled
keys on the table. This test rejects keys that are not covering, and for
covering keys the hint should be ignored anyway.
When storing the VIEW the CREATE VIEW command is reconstructed
from the parse tree. While constructing the command string
the index hints specified should also be printed.
Fixed by adding code to print the index hints when printing a
table in the FROM clause.
The optimizer sets index traversal in reverse order only if there are
used key parts that are not compared to a constant.
However using the primary key as an ORDER BY suffix rendered the check
incomplete : going in reverse order must still be used even if
all the parts of the secondary key are compared to a constant.
Fixed by relaxing the check and set reverse traversal even when all
the secondary index keyparts are compared to a const.
Also account for the case when all the primary keys are compared to a
constant.