precision > 0 && scale <= precision'.
A sign of a resulting item of the IFNULL function was not
updated and the maximal length of this result was calculated
improperly. Correct algorithm was copy&pasted from the IF
function implementation.
Problem: The "regex" library written by Henry Spencer
does not support tricky character sets like UCS2.
Fix: convert tricky character sets to UTF8 before calling
regex functions.
type of the result.
There are several functions that accept parameters of different types.
The result field type of such functions was determined based on
the aggregated result type of its arguments. As the DATE and the DATETIME
types are represented by the STRING type, the result field type
of the affected functions was always STRING for DATE/DATETIME arguments.
The affected functions are COALESCE, IF, IFNULL, CASE, LEAST/GREATEST, CASE.
Now the affected functions aggregate the field types of their arguments rather
than their result types and return the result of aggregation as their result
field type.
The cached_field_type member variable is added to the number of classes to
hold the aggregated result field type.
The str_to_date() function's result field type now defaults to the
MYSQL_TYPE_DATETIME.
The agg_field_type() function is added. It aggregates field types with help
of the Field::field_type_merge() function.
The create_table_from_items() function now uses the
item->tmp_table_field_from_field_type() function to get the proper field
when the item is a function with a STRING result type.
Faster thr_alarm()
Added 'Opened_files' status variable to track calls to my_open()
Don't give warnings when running mysql_install_db
Added option --source-install to mysql_install_db
I had to do the following renames() as used polymorphism didn't work with Forte compiler on 64 bit systems
index_read() -> index_read_map()
index_read_idx() -> index_read_idx_map()
index_read_last() -> index_read_last_map()
The get_time_value function is added. It is used to obtain TIME values both
from items the can return time as an integer and from items that can return
time only as a string.
The Arg_comparator::compare_datetime function now uses pointer to a getter
function to obtain values to compare. Now this function is also used for
comparison of TIME values.
The get_value_func variable is added to the Arg_comparator class.
It points to a getter function for the DATE/DATETIME/TIME comparator.
Time values were compared by the BETWEEN function as strings. This led to a
wrong result in cases when some of arguments are less than 100 hours and other
are greater.
Now if all 3 arguments of the BETWEEN function are of the TIME type then
they are compared as integers.
Time values were compared as strings. This led to a wrong comparison
result when comparing values one of which is under 100 hours and another is
over 100 hours.
Now when the Arg_comparator::set_cmp_func function sees that both items to
compare are of the TIME type it sets the comparator to the
Arg_comparator::compare_e_int or the Arg_comparator::compare_int_unsigned
functions.
integer constants.
This bug is introduced by the fix for bug#16377. Before the fix the
Item_func_between::fix_length_and_dec method converted the second and third
arguments to the type of the first argument if they were constant and the first
argument is of the DATE/DATETIME type. That approach worked well for integer
constants and sometimes produced bad result for string constants. The fix for
the bug#16377 wrongly removed that code at all and as a result of this the
comparison of a DATETIME field and an integer constant was carried out in a
wrong way and sometimes led to wrong result sets.
Now the Item_func_between::fix_length_and_dec method converts the second and
third arguments to the type of the first argument if they are constant, the
first argument is of the DATE/DATETIME type and the DATETIME comparator isn't
applicable.
type assertion.
The bug was introduced by the patch for bug #16377.
The "+ INTERVAL" (Item_date_add_interval) function detects its result type
by the type of its first argument. But in some cases it returns STRING
as the result type. This happens when, for example, the first argument is a
DATE represented as string. All this makes the get_datetime_value()
function misinterpret such result and return wrong DATE/DATETIME value.
To avoid such cases in the fix for #16377 the code that detects correct result
field type on the first execution was added to the
Item_date_add_interval::get_date() function. Due to this the result
field type of the Item_date_add_interval item stored by the send_fields()
function differs from item's result field type at the moment when
the item is actually sent. It causes an assertion failure.
Now the get_datetime_value() detects that the DATE value is returned by
some item not only by checking the result field type but also by comparing
the returned value with the 100000000L constant - any DATE value should be
less than this value.
Removed result field type adjusting code from the
Item_date_add_interval::get_date() function.
When storing a large number to a FLOAT or DOUBLE field with fixed length, it could be incorrectly truncated if the field's length was greater than 31.
This patch also does some code cleanups to be able to reuse code which is common between Field_float::store() and Field_double::store().
is involved.
The Arg_comparator::compare_datetime() comparator caches its arguments if
they are constants i.e. const_item() returns true. The
Item_func_get_user_var::const_item() returns true or false based on
the current query_id and the query_id where the variable was created.
Thus even if a query can change its value its const_item() still will return
true. All this leads to a wrong comparison result when an object of the
Item_func_get_user_var class is involved.
Now the Arg_comparator::can_compare_as_dates() and the
get_datetime_value() functions never cache result of the GET_USER_VAR()
function (the Item_func_get_user_var class).
Made year 2000 handling more uniform
Removed year 2000 handling out from calc_days()
The above removes some bugs in date/datetimes with year between 0 and 200
Now we get a note when we insert a datetime value into a date column
For default values to CREATE, don't give errors for warning level NOTE
Fixed some compiler failures
Added library ws2_32 for windows compilation (needed if we want to compile with IOCP support)
Removed duplicate typedef TIME and replaced it with MYSQL_TIME
Better (more complete) fix for: Bug#21103 "DATE column not compared as DATE"
Fixed properly Bug#18997 "DATE_ADD and DATE_SUB perform year2K autoconversion magic on 4-digit year value"
Fixed Bug#23093 "Implicit conversion of 9912101 to date does not match cast(9912101 as date)"
function.
A wrong condition was used to check that the
Arg_comparator::can_compare_as_dates() function calculated the value of the
string constant. When comparing a non-const STRING function with a constant
DATETIME function it leads to saving an arbitrary value as a cached value of
the DATETIME function.
Now the Arg_comparator::set_cmp_func() function initializes the const_value
variable to the impossible DATETIME value (-1) and this const_value is
cached only if it was changed by the Arg_comparator::can_compare_as_dates()
function.
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
The IN function was comparing DATE/DATETIME values either as ints or as
strings. Both methods have their disadvantages and may lead to a wrong
result.
Now IN function checks whether all of its arguments has the STRING result
types and at least one of them is a DATE/DATETIME item. If so it uses either
an object of the in_datetime class or an object of the cmp_item_datetime
class to perform its work. If the IN() function arguments are rows then
row columns are checked whether the DATE/DATETIME comparator should be used
to compare them.
The in_datetime class is used to find occurence of the item to be checked
in the vector of the constant DATE/DATETIME values. The cmp_item_datetime
class is used to compare items one by one in the DATE/DATETIME context.
Both classes obtain values from items with help of the get_datetime_value()
function and cache the left item if it is a constant one.
The LEAST/GREATEST functions compared DATE/DATETIME values as
strings which in some cases could lead to a wrong result.
A new member function called cmp_datetimes() is added to the
Item_func_min_max class. It compares arguments in DATETIME context
and returns index of the least/greatest argument.
The Item_func_min_max::fix_length_and_dec() function now detects when
arguments should be compared in DATETIME context and sets the newly
added flag compare_as_dates. It indicates that the cmp_datetimes() function
should be called to get a correct result.
Item_func_min_max::val_xxx() methods are corrected to call the
cmp_datetimes() function when needed.
Objects of the Item_splocal class now stores and reports correct original
field type.
The BETWEEN function was comparing DATE/DATETIME values either as ints or as
strings. Both methods have their disadvantages and may lead to a wrong
result.
Now BETWEEN function checks whether all of its arguments has the STRING result
types and at least one of them is a DATE/DATETIME item. If so it sets up
two Arg_comparator obects to compare with the compare_datetime() comparator
and uses them to compare such items.
Added two Arg_comparator object members and one flag to the
Item_func_between class for the correct DATE/DATETIME comparison.
The Item_func_between::fix_length_and_dec() function now detects whether
it's used for DATE/DATETIME comparison and sets up newly added Arg_comparator
objects to do this.
The Item_func_between::val_int() now uses Arg_comparator objects to perform
correct DATE/DATETIME comparison.
The owner variable of the Arg_comparator class now can be set to NULL if the
caller wants to handle NULL values by itself.
Now the Item_date_add_interval::get_date() function ajusts cached_field type according to the detected type.
DATE and DATETIME can be compared either as strings or as int. Both
methods have their disadvantages. Strings can contain valid DATETIME value
but have insignificant zeros omitted thus became non-comparable with
other DATETIME strings. The comparison as int usually will require conversion
from the string representation and the automatic conversion in most cases is
carried out in a wrong way thus producing wrong comparison result. Another
problem occurs when one tries to compare DATE field with a DATETIME constant.
The constant is converted to DATE losing its precision i.e. losing time part.
This fix addresses the problems described above by adding a special
DATE/DATETIME comparator. The comparator correctly converts DATE/DATETIME
string values to int when it's necessary, adds zero time part (00:00:00)
to DATE values to compare them correctly to DATETIME values. Due to correct
conversion malformed DATETIME string values are correctly compared to other
DATE/DATETIME values.
As of this patch a DATE value equals to DATETIME value with zero time part.
For example '2001-01-01' equals to '2001-01-01 00:00:00'.
The compare_datetime() function is added to the Arg_comparator class.
It implements the correct comparator for DATE/DATETIME values.
Two supplementary functions called get_date_from_str() and get_datetime_value()
are added. The first one extracts DATE/DATETIME value from a string and the
second one retrieves the correct DATE/DATETIME value from an item.
The new Arg_comparator::can_compare_as_dates() function is added and used
to check whether two given items can be compared by the compare_datetime()
comparator.
Two caching variables were added to the Arg_comparator class to speedup the
DATE/DATETIME comparison.
One more store() method was added to the Item_cache_int class to cache int
values.
The new is_datetime() function was added to the Item class. It indicates
whether the item returns a DATE/DATETIME value.
are used as arguments of the IN predicate.
Added a function to check compatibility of row expressions. Made sure that this
function to be called for Item_func_in objects by fix_length_and_dec().
IN/BETWEEN predicates in sorting expressions.
Wrong results may occur when the select list contains an expression
with IN/BETWEEN predicate that differs from a sorting expression by
an additional NOT only.
Added the method Item_func_opt_neg::eq to compare correctly expressions
containing [NOT] IN/BETWEEN.
The eq method inherited from the Item_func returns TRUE when comparing
'a IN (1,2)' with 'a NOT IN (1,2)' that is not, of course, correct.
creation of the partitioned table could fail as we created Item-s for
it's list function in thd->mem_root, and then do Item->fix_fields
in the context of other table->mem_root (so that memory alloced
there was alloced in this table->mem_root). As we freed the
table->mem_root before we do thd->free_items, our Item-s had
pointers to the freed memory, that caused the crash
Made year 2000 handling more uniform
Removed year 2000 handling out from calc_days()
The above removes some bugs in date/datetimes with year between 0 and 200
Now we get a note when we insert a datetime value into a date column
For default values to CREATE, don't give errors for warning level NOTE
Fixed some compiler failures
Added library ws2_32 for windows compilation (needed if we want to compile with IOCP support)
Removed duplicate typedef TIME and replaced it with MYSQL_TIME
Better (more complete) fix for: Bug#21103 "DATE column not compared as DATE"
Fixed properly Bug#18997 "DATE_ADD and DATE_SUB perform year2K autoconversion magic on 4-digit year value"
Fixed Bug#23093 "Implicit conversion of 9912101 to date does not match cast(9912101 as date)"
of its argument happened to be a decimal expression returning
the NULL value.
The crash was due to the fact the function in_decimal::set did
not take into account that val_decimal() could return 0 if
the decimal expression had been evaluated to NULL.
Several problems here :
1. The conversion to double of an hex string const item
was not taking into account the unsigned flag.
2. IN was not behaving in the same was way as comparisons
when performed over an INT/DATE/DATETIME/TIMESTAMP column
and a constant. The ordinary comparisons in that case
convert the constant to an INTEGER value and do int
comparisons. Fixed the IN to do the same.
3. IN is not taking into account the unsigned flag when
calculating <expr> IN (<int_const1>, <int_const2>, ...).
Extended the implementation of IN to store and process
the unsigned flag for its arguments.
Fixed compile-pentium64 scripts
Fixed wrong estimate of update_with_key_prefix in sql-bench
Merge bk-internal.mysql.com:/home/bk/mysql-5.1 into mysql.com:/home/my/mysql-5.1
Fixed unsafe define of uint4korr()
Fixed that --extern works with mysql-test-run.pl
Small trivial cleanups
This also fixes a bug in counting number of rows that are updated when we have many simultanous queries
Move all connection handling and command exectuion main loop from sql_parse.cc to sql_connection.cc
Split handle_one_connection() into reusable sub functions.
Split create_new_thread() into reusable sub functions.
Added thread_scheduler; Preliminary interface code for future thread_handling code.
Use 'my_thread_id' for internal thread id's
Make thr_alarm_kill() to depend on thread_id instead of thread
Make thr_abort_locks_for_thread() depend on thread_id instead of thread
In store_globals(), set my_thread_var->id to be thd->thread_id.
Use my_thread_var->id as basis for my_thread_name()
The above changes makes the connection we have between THD and threads more soft.
Added a lot of DBUG_PRINT() and DBUG_ASSERT() functions
Fixed compiler warnings
Fixed core dumps when running with --debug
Removed setting of signal masks (was never used)
Made event code call pthread_exit() (portability fix)
Fixed that event code doesn't call DBUG_xxx functions before my_thread_init() is called.
Made handling of thread_id and thd->variables.pseudo_thread_id uniform.
Removed one common 'not freed memory' warning from mysqltest
Fixed a couple of usage of not initialized warnings (unlikely cases)
Suppress compiler warnings from bdb and (for the moment) warnings from ndb
When checking if an IN predicate can be evaluated using a key
the optimizer makes sure that all the arguments of IN are of
the same result type. To assure that it check whether
Item_func_in::array is filled in.
However Item_func_in::array is set if the types are
the same AND all the arguments are compile time constants.
Fixed by introducing Item_func_in::arg_types_compatible
flag to allow correct checking of the desired condition.
operations)
Before this change, the boolean predicates:
- X IS TRUE,
- X IS NOT TRUE,
- X IS FALSE,
- X IS NOT FALSE
were implemented by expanding the Item tree in the parser, by using a
construct like:
Item_func_if(Item_func_ifnull(X, <value>), <value>, <value>)
Each <value> was a constant integer, either 0 or 1.
A bug in the implementation of the function IF(a, b, c), in
Item_func_if::fix_length_and_dec(), would cause the following :
When the arguments b and c are both unsigned, the result type of the
function was signed, instead of unsigned.
When the result of the if function is signed, space for the sign could be
counted twice (in the max() expression for a signed argument, and in the
total), causing the member max_length to be too high.
An effect of this is that the final type of IF(x, int(1), int(1)) would be
int(2) instead of int(1).
With this fix, the problems found in Item_func_if::fix_length_and_dec()
have been fixed.
While it's semantically correct to represent 'X IS TRUE' with
Item_func_if(Item_func_ifnull(X, <value>), <value>, <value>),
there are however more problems with this construct.
a)
Building the parse tree involves :
- creating 5 Item instances (3 ints, 1 ifnull, 1 if),
- creating each Item calls my_pthread_getspecific_ptr() once in the operator
new(size), and a second time in the Item::Item() constructor, resulting
in a total of 10 calls to get the current thread.
Evaluating the expression involves evaluating up to 4 nodes at runtime.
This representation could be greatly simplified and improved.
b)
Transforming the parse tree internally with if(ifnull(...)) is fine as long
as this transformation is internal to the server implementation.
With views however, the result of the parse tree is later exposed by the
::print() functions, and stored as part of the view definition.
Doing this has long term consequences:
1)
The original semantic 'X IS TRUE' is lost, and replaced by the
if(ifnull(...)) expression. As a result, SHOW CREATE VIEW does not restore
the original code.
2)
Should a future version of MySQL implement the SQL BOOLEAN data type for
example, views created today using 'X IS NULL' can be exported using
mysqldump, and imported again. Such views would be converted correctly and
automatically to use a BOOLEAN column in the future version.
With 'X IS TRUE' and the current implementations, views using these
"boolean" predicates would not be converted during the export/import, and
would use integer columns instead.
The difference traces back to how SHOW CREATE VIEW preserves 'X IS NULL' but
does not preserve the 'X IS TRUE' semantic.
With this fix, internal representation of 'X IS TRUE' booleans predicates
has changed, so that:
- dedicated Item classes are created for each predicate,
- only 1 Item is created to represent 1 predicate
- my_pthread_getspecific_ptr() is invoked 1 time instead of 10
- SHOW CREATE VIEW preserves the original semantic, and prints 'X IS TRUE'.
Note that, because of the fix in Item_func_if, views created before this fix
will:
- correctly use a int(1) type instead of int(2) for boolean predicates,
- incorrectly print the if(ifnull(...), ...) expression in SHOW CREATE VIEW,
since the original semantic (X IS TRUE) has been lost.
- except for the syntax used in SHOW CREATE VIEW, these views will operate
properly, no action is needed.
Views created after this fix will operate correctly, and will preserve the
original code semantic in SHOW CREATE VIEW.
Objects of the class Item_equal contain an auxiliary member
eval_item of the type cmp_item that is used only for direct
evaluation of multiple equalities. Currently a multiple equality
is evaluated directly only in the cases when the equality holds
at most for one row in the result set.
The compare collation of eval_item was determined incorectly.
It could lead to returning incorrect results for some queries.
with a column of the DATETIME type could return a wrong
result set if the WHERE clause included a BETWEEN condition
on the column.
Fixed the method Item_func_between::fix_length_and_dec
where the aggregation type for BETWEEN predicates calculated
incorrectly if the first argument was a view column of the
DATETIME type.
Depending on the queries we use different data processing methods
and can lose some data in case of double (and decimal in 4.1) fields.
The fix consists of two parts:
1. double comparison changed, now double a is equal to double b
if (a-b) is less than 5*0.1^(1 + max(a->decimals, b->decimals)).
For example, if a->decimals==1, b->decimals==2, a==b if (a-b)<0.005
2. if we use a temporary table, store double values there as is
to avoid any data conversion (rounding).
Removed a lot of compiler warnings
Removed not used variables, functions and labels
Initialize some variables that could be used unitialized (fatal bugs)
%ll -> %l
The bug report has demonstrated the following two problems.
1. If an ORDER/GROUP BY list includes a constant expression being
optimized away and, at the same time, containing single-row
subselects that return more that one row, no error is reported.
Strictly speaking the standard allows to ignore error in this case.
Yet, now a corresponding fatal error is reported in this case.
2. If a query requires sorting by expressions containing single-row
subselects that, however, return more than one row, then the execution
of the query may cause a server crash.
To fix this some code has been added that blocks execution of a subselect
item in case of a fatal error in the method Item_subselect::exec.
We use INT_RESULT type if all arguments are of type INT for 'if', 'case',
'coalesce' functions regardless of arguments' unsigned flag, so sometimes we can
exceed the INT bounds.
when they contain the '!' operator.
Added an implementation for the method Item_func_not::print.
The method encloses any NOT expression into extra parentheses to avoid
incorrect stored representations of views that use the '!' operators.
Without this change when a view was created that contained
the expression !0*5 its stored representation contained not this
expression but rather the expression not(0)*5 .
The operator '!' is of a higher precedence than '*', while NOT is
of a lower precedence than '*'. That's why the expression !0*5
is interpreted as not(0)*5, while the expression not(0)*5 is interpreted
as not((0)*5) unless sql_mode is set to HIGH_NOT_PRECEDENCE.
Now we translate !0*5 into (not(0))*5.
- Make the code produce correct result: use an array of triggers to turn on/off equalities for each
compared column. Also turn on/off optimizations based on those equalities.
- Make EXPLAIN output show "Full scan on NULL key" for tables for which we switch between
ref/unique_subquery/index_subquery and ALL access.
- index_subquery engine now has HAVING clause when it is needed, and it is
displayed in EXPLAIN EXTENDED
- Fix incorrect presense of "Using index" for index/unique-based subqueries (BUG#22930)
// bk trigger note: this commit refers to BUG#24127
Corrected spelling in copyright text
Makefile.am:
Don't update the files from BitKeeper
Many files:
Removed "MySQL Finland AB & TCX DataKonsult AB" from copyright header
Adjusted year(s) in copyright header
Many files:
Added GPL copyright text
Removed files:
Docs/Support/colspec-fix.pl
Docs/Support/docbook-fixup.pl
Docs/Support/docbook-prefix.pl
Docs/Support/docbook-split
Docs/Support/make-docbook
Docs/Support/make-makefile
Docs/Support/test-make-manual
Docs/Support/test-make-manual-de
Docs/Support/xwf
During optimization we replace NULL with 0 for not null
date{time} fields, so uset MODE_NO_ZERO_DATE flag for a while
as we don't want to give extra warnings.
- Removed not used variables and functions
- Added #ifdef around code that is not used
- Renamed variables and functions to avoid conflicts
- Removed some not used arguments
Fixed some class/struct warnings in ndb
Added define IS_LONGDATA() to simplify code in libmysql.c
I did run gcov on the changes and added 'purecov' comments on almost all lines that was not just variable name changes
Blocked evaluation of constant objects of the classes
Item_func_is_null and Item_is_not_null_test at the
prepare phase in the cases when the objects used subqueries.
We create Item_cache_* object for each operand for each left operand of
a subquery predicate. We also create Item_func_conv_charset for each string
constant that needs charset conversion. So here we have Item_cache wrapped
into Item_func_conv_charset.
When Item_func_conv_charset wraps an constant Item it gets it's value
in constructor. The problem is that Item_cache is ready to be used only
at execution time, which is too late.
The fix makes Item_cache wrapping constant to get ready at fix_fields() time.
Added missing DBUG_RETURN statements (in mysqldump.c)
Added missing enums
Fixed a lot of wrong DBUG_PRINT() statements, some of which could cause crashes
Removed usage of %lld and %p in printf strings as these are not portable or produces different results on different systems.