eprintf() was missing a va_start(), which caused wrong filename to be
printed when printing recovery trace.
Added also missing new line when printing "Table is crashed" to trace file
- The commit 5fd3c7471e3e0673b50d309567c9747d36f09412(MDEV-24709)
resets the recv_no_ibuf_operations in
recv_recovery_from_checkpoint_start(), but InnoDB fails to reset
the variable recv_no_log_write() during that time and that leads
to the assert failure.
- This is caused by commit ad6171b91c
(MDEV-22456). InnoDB reloads the evicted table again from dictionary.
In that case, AHI entries and current index object mismatches
happens. When index object mismatches then InnoDB should drop
the page hash AHI entries for the block. In
btr_search_drop_page_hash_index(), InnoDB should take exclusive
lock on the AHI latch if index is already freed to avoid the
freed memory access during buf_pool_resize()
Problem was that thd::awake assumes now that you hold THD::LOCK_thd_data
so we need to keep it when we call wsrep_thd_awake from
wsrep_abort_transaction.
innobase_rename_column_try(): When renaming SYS_FIELDS records
for secondary indexes, try to use both formats of SYS_FIELDS.POS
as keys, in case the PRIMARY KEY includes a column prefix.
Without this fix, an ALTER TABLE that renames a column followed
by a server restart (or LRU eviction of the table definition
from dict_sys) would make the table inaccessible.
innodb_shutdown(): Check that fil_system.temp_space is not null
before invoking a member function.
This regression was caused by the merge
commit fa1aef39eb
of MDEV-24340 (commit 1eb59c307d).
bson.cpp:1775:3: error: case label value is less than minimum value for type [-Werror]
case TYPE_NULL:
bson.cpp:1776:7: error: statement will never be executed [-Werror=switch-unreachable]
b = true;
Analysis:
=========
Reason for test failure was a mutex deadlock between DeadlockChecker with stack
Thread 6 (Thread 0xffff70066070 (LWP 24667)):
0 0x0000ffff784e850c in __lll_lock_wait (futex=futex@entry=0xffff04002258, private=0) at lowlevellock.c:46
1 0x0000ffff784e19f0 in __GI___pthread_mutex_lock (mutex=mutex@entry=0xffff04002258) at pthread_mutex_lock.c:135
2 0x0000aaaaac8cd014 in inline_mysql_mutex_lock (src_file=0xaaaaacea0f28 "/home/buildbot/buildbot/build/mariadb-10.2.37/sql/wsrep_thd.cc", src_line=762, that=0xffff04002258) at /home/buildbot/buildbot/build/mariadb-10.2.37/include/mysql/psi/mysql_thread.h:675
3 wsrep_thd_is_BF (thd=0xffff040009a8, sync=sync@entry=1 '\001') at /home/buildbot/buildbot/build/mariadb-10.2.37/sql/wsrep_thd.cc:762
4 0x0000aaaaacadce68 in lock_rec_has_to_wait (for_locking=false, lock_is_on_supremum=<optimized out>, lock2=0xffff628952d0, type_mode=291, trx=0xffff62894070) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/lock/lock0lock.cc:826
5 lock_has_to_wait (lock1=<optimized out>, lock2=0xffff628952d0) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/lock/lock0lock.cc:873
6 0x0000aaaaacadd0b0 in DeadlockChecker::search (this=this@entry=0xffff70061fe8) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/lock/lock0lock.cc:7142
7 0x0000aaaaacae2dd8 in DeadlockChecker::check_and_resolve (lock=lock@entry=0xffff62894120, trx=trx@entry=0xffff62894070) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/lock/lock0lock.cc:7286
8 0x0000aaaaacae3070 in lock_rec_enqueue_waiting (c_lock=0xffff628952d0, type_mode=type_mode@entry=3, block=block@entry=0xffff62076c40, heap_no=heap_no@entry=2, index=index@entry=0xffff4c076f28, thr=thr@entry=0xffff4c078810, prdt=prdt@entry=0x0) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/lock/lock0lock.cc:1796
9 0x0000aaaaacae3900 in lock_rec_lock_slow (thr=0xffff4c078810, index=0xffff4c076f28, heap_no=2, block=0xffff62076c40, mode=3, impl=0) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/lock/lock0lock.cc:2106
10 lock_rec_lock (impl=false, mode=3, block=0xffff62076c40, heap_no=2, index=0xffff4c076f28, thr=0xffff4c078810) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/lock/lock0lock.cc:2168
11 0x0000aaaaacae3ee8 in lock_sec_rec_read_check_and_lock (flags=flags@entry=0, block=block@entry=0xffff62076c40, rec=rec@entry=0xffff6240407f "\303\221\342\200\232\303\220\302\265\303\220\302\272\303\221\302\201\303\221\342\200\232", index=index@entry=0xffff4c076f28, offsets=0xffff4c080690, offsets@entry=0xffff70062a30, mode=LOCK_X, mode@entry=1653162096, gap_mode=0, gap_mode@entry=281470749427104, thr=thr@entry=0xffff4c078810) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/lock/lock0lock.cc:6082
12 0x0000aaaaacb684c4 in sel_set_rec_lock (pcur=0xaaaac841c270, pcur@entry=0xffff4c077d58, rec=0xffff6240407f "\303\221\342\200\232\303\220\302\265\303\220\302\272\303\221\302\201\303\221\342\200\232", rec@entry=0x28 <error: Cannot access memory at address 0x28>, index=index@entry=0xffff4c076f28, offsets=0xffff70062a30, mode=281472334905456, type=281470749427104, thr=0xffff4c078810, thr@entry=0x9f, mtr=0x0, mtr@entry=0xffff70063928) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/row/row0sel.cc:1270
13 0x0000aaaaacb6bb64 in row_search_mvcc (buf=buf@entry=0xffff4c080690 "\376\026", mode=mode@entry=PAGE_CUR_GE, prebuilt=0xffff4c077b98, match_mode=match_mode@entry=1, direction=direction@entry=0) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/row/row0sel.cc:5181
14 0x0000aaaaacaae568 in ha_innobase::index_read (this=0xffff4c038a80, buf=0xffff4c080690 "\376\026", key_ptr=<optimized out>, key_len=768, find_flag=<optimized out>) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/handler/ha_innodb.cc:9393
15 0x0000aaaaac9201cc in handler::ha_index_read_map (this=0xffff4c038a80, buf=0xffff4c080690 "\376\026", key=0xffff4c07ccf8 "", keypart_map=keypart_map@entry=18446744073709551615, find_flag=find_flag@entry=HA_READ_KEY_EXACT) at /home/buildbot/buildbot/build/mariadb-10.2.37/sql/handler.cc:2718
16 0x0000aaaaac9f36b0 in Rows_log_event::find_row (this=this@entry=0xffff4c030098, rgi=rgi@entry=0xffff4c01b510) at /home/buildbot/buildbot/build/mariadb-10.2.37/sql/log_event.cc:13461
17 0x0000aaaaac9f3e44 in Update_rows_log_event::do_exec_row (this=0xffff4c030098, rgi=0xffff4c01b510) at /home/buildbot/buildbot/build/mariadb-10.2.37/sql/log_event.cc:13936
18 0x0000aaaaac9e7ee8 in Rows_log_event::do_apply_event (this=0xffff4c030098, rgi=0xffff4c01b510) at /home/buildbot/buildbot/build/mariadb-10.2.37/sql/log_event.cc:11101
19 0x0000aaaaac8ca4e8 in Log_event::apply_event (rgi=0xffff4c01b510, this=0xffff4c030098) at /home/buildbot/buildbot/build/mariadb-10.2.37/sql/log_event.h:1454
20 wsrep_apply_events (buf_len=0, events_buf=0x1, thd=0xffff4c0009a8) at /home/buildbot/buildbot/build/mariadb-10.2.37/sql/wsrep_applier.cc:164
21 wsrep_apply_cb (ctx=0xffff4c0009a8, buf=0x1, buf_len=18446743528248705000, flags=<optimized out>, meta=<optimized out>) at /home/buildbot/buildbot/build/mariadb-10.2.37/sql/wsrep_applier.cc:267
22 0x0000ffff7322d29c in galera::TrxHandle::apply (this=this@entry=0xffff4c027960, recv_ctx=recv_ctx@entry=0xffff4c0009a8, apply_cb=apply_cb@entry=0xaaaaac8c9fe8 <wsrep_apply_cb(void*, void const*, size_t, uint32_t, wsrep_trx_meta_t const*)>, meta=...) at /home/buildbot/buildbot/build/galera/src/trx_handle.cpp:317
23 0x0000ffff73239664 in apply_trx_ws (recv_ctx=recv_ctx@entry=0xffff4c0009a8, apply_cb=0xaaaaac8c9fe8 <wsrep_apply_cb(void*, void const*, size_t, uint32_t, wsrep_trx_meta_t const*)>, commit_cb=0xaaaaac8ca8d0 <wsrep_commit_cb(void*, uint32_t, wsrep_trx_meta_t const*, wsrep_bool_t*, bool)>, trx=..., meta=...) at /home/buildbot/buildbot/build/galera/src/replicator_smm.cpp:34
24 0x0000ffff7323c0c4 in galera::ReplicatorSMM::apply_trx (this=this@entry=0xaaaac7c7ebc0, recv_ctx=recv_ctx@entry=0xffff4c0009a8, trx=trx@entry=0xffff4c027960) at /home/buildbot/buildbot/build/galera/src/replicator_smm.cpp:454
25 0x0000ffff7323e8b8 in galera::ReplicatorSMM::process_trx (this=0xaaaac7c7ebc0, recv_ctx=0xffff4c0009a8, trx=0xffff4c027960) at /home/buildbot/buildbot/build/galera/src/replicator_smm.cpp:1258
26 0x0000ffff73268f68 in galera::GcsActionSource::dispatch (this=this@entry=0xaaaac7c7f348, recv_ctx=recv_ctx@entry=0xffff4c0009a8, act=..., exit_loop=@0xffff7006535f: false) at /home/buildbot/buildbot/build/galera/src/gcs_action_source.cpp:115
27 0x0000ffff73269dd0 in galera::GcsActionSource::process (this=0xaaaac7c7f348, recv_ctx=0xffff4c0009a8, exit_loop=@0xffff7006535f: false) at /home/buildbot/buildbot/build/galera/src/gcs_action_source.cpp:180
28 0x0000ffff7323ef5c in galera::ReplicatorSMM::async_recv (this=0xaaaac7c7ebc0, recv_ctx=0xffff4c0009a8) at /home/buildbot/buildbot/build/galera/src/replicator_smm.cpp:362
29 0x0000ffff73217760 in galera_recv (gh=<optimized out>, recv_ctx=<optimized out>) at /home/buildbot/buildbot/build/galera/src/wsrep_provider.cpp:244
30 0x0000aaaaac8cb344 in wsrep_replication_process (thd=0xffff4c0009a8) at /home/buildbot/buildbot/build/mariadb-10.2.37/sql/wsrep_thd.cc:486
31 0x0000aaaaac8bc3a0 in start_wsrep_THD (arg=arg@entry=0xaaaac7cb3e38) at /home/buildbot/buildbot/build/mariadb-10.2.37/sql/wsrep_mysqld.cc:2173
32 0x0000aaaaaca89198 in pfs_spawn_thread (arg=<optimized out>) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/perfschema/pfs.cc:1869
33 0x0000ffff784defc4 in start_thread (arg=0xaaaaaca890d8 <pfs_spawn_thread(void*)>) at pthread_create.c:335
34 0x0000ffff7821c3f0 in thread_start () at ../sysdeps/unix/sysv/linux/aarch64/clone.S:89
and background victim transaction kill with stack
Thread 28 (Thread 0xffff485fa070 (LWP 24870)):
0 0x0000ffff784e530c in __pthread_cond_wait (cond=cond@entry=0xaaaac83e98e0, mutex=mutex@entry=0xaaaac83e98b0) at pthread_cond_wait.c:186
1 0x0000aaaaacb10788 in os_event::wait (this=0xaaaac83e98a0) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/os/os0event.cc:158
2 os_event::wait_low (reset_sig_count=2, this=0xaaaac83e98a0) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/os/os0event.cc:325
3 os_event_wait_low (event=0xaaaac83e98a0, reset_sig_count=<optimized out>) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/os/os0event.cc:507
4 0x0000aaaaacb98480 in sync_array_wait_event (arr=arr@entry=0xaaaac7dbb450, cell=@0xffff485f96e8: 0xaaaac7dbb560) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/sync/sync0arr.cc:471
5 0x0000aaaaacab53c8 in TTASEventMutex<GenericPolicy>::enter (line=19524, filename=0xaaaaacf2ce40 "/home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/handler/ha_innodb.cc", max_delay=<optimized out>, max_spins=0, this=0xaaaac83cc8c0) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/include/ib0mutex.h:516
6 PolicyMutex<TTASEventMutex<GenericPolicy> >::enter (this=0xaaaac83cc8c0, n_spins=<optimized out>, n_delay=<optimized out>, name=0xaaaaacf2ce40 "/home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/handler/ha_innodb.cc", line=19524) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/include/ib0mutex.h:637
7 0x0000aaaaacaaa52c in bg_wsrep_kill_trx (void_arg=0xffff4c057430) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/innobase/handler/ha_innodb.cc:19524
8 0x0000aaaaac79e7f0 in handle_manager (arg=arg@entry=0x0) at /home/buildbot/buildbot/build/mariadb-10.2.37/sql/sql_manager.cc:112
9 0x0000aaaaaca89198 in pfs_spawn_thread (arg=<optimized out>) at /home/buildbot/buildbot/build/mariadb-10.2.37/storage/perfschema/pfs.cc:1869
10 0x0000ffff784defc4 in start_thread (arg=0xaaaaaca890d8 <pfs_spawn_thread(void*)>) at pthread_create.c:335
11 0x0000ffff7821c3f0 in thread_start () at ../sysdeps/unix/sysv/linux/aarch64/clone.S:89
Fix:
====
Do not use THD::LOCK_thd_data mutex if we already hold lock_sys->mutex because it
will cause mutexing order violation. Victim transaction holding conflicting
locks can't be committed or rolled back while we hold lock_sys->mutex. Thus,
it is safe to do wsrep_thd_is_BF call with no additional mutexes.
recv_recovery_from_checkpoint_start(): Clear the recv_no_ibuf_operations
flag at the same time when we enabled writes to the log.
The failure to clear the flag might have caused some missed
change buffer merges, at least to the secondary index of SYS_TABLES
that were accessed by trx_resurrect_table_locks() while the last
recovery batch was in progress.
Thanks to Thirunarayanan Balathandayuthapani for suggesting this fix.
fil_rename_tablespace(): Do not write a redundant MLOG_FILE_RENAME2
record.
The recovery bug will be fixed later. The problem is that we are
invoking fil_op_replay_rename() too often, while we should skip
any 'intermediate' names of a tablespace and only apply the
very last rename for each tablespace identifier, and only if
the tablespace name is not already correct.
The assertion failed in handler::ha_reset upon SELECT under
READ UNCOMMITTED from table with index on virtual column.
This was the debug-only failure, though the problem is mush wider:
* MY_BITMAP is a structure containing my_bitmap_map, the latter is a raw
bitmap.
* read_set, write_set and vcol_set of TABLE are the pointers to MY_BITMAP
* The rest of MY_BITMAPs are stored in TABLE and TABLE_SHARE
* The pointers to the stored MY_BITMAPs, like orig_read_set etc, and
sometimes all_set and tmp_set, are assigned to the pointers.
* Sometimes tmp_use_all_columns is used to substitute the raw bitmap
directly with all_set.bitmap
* Sometimes even bitmaps are directly modified, like in
TABLE::update_virtual_field(): bitmap_clear_all(&tmp_set) is called.
The last three bullets in the list, when used together (which is mostly
always) make the program flow cumbersome and impossible to follow,
notwithstanding the errors they cause, like this MDEV-17556, where tmp_set
pointer was assigned to read_set, write_set and vcol_set, then its bitmap
was substituted with all_set.bitmap by dbug_tmp_use_all_columns() call,
and then bitmap_clear_all(&tmp_set) was applied to all this.
To untangle this knot, the rule should be applied:
* Never substitute bitmaps! This patch is about this.
orig_*, all_set bitmaps are never substituted already.
This patch changes the following function prototypes:
* tmp_use_all_columns, dbug_tmp_use_all_columns
to accept MY_BITMAP** and to return MY_BITMAP * instead of my_bitmap_map*
* tmp_restore_column_map, dbug_tmp_restore_column_maps to accept
MY_BITMAP* instead of my_bitmap_map*
These functions now will substitute read_set/write_set/vcol_set directly,
and won't touch underlying bitmaps.
We may end up with an empty leaf page (containing only an ADD COLUMN
metadata record) that is not the root page.
innobase_add_instant_try(): Disable an optimization for a non-canonical
empty table that contains a metadata record somewhere else than in
the root page.
btr_pcur_store_position(): Tolerate a non-canonical empty table.
mutex order violation here.
when wsrep bf thread kills a conflicting trx, the stack is
wsrep_thd_LOCK()
wsrep_kill_victim()
lock_rec_other_has_conflicting()
lock_clust_rec_read_check_and_lock()
row_search_mvcc()
ha_innobase::index_read()
ha_innobase::rnd_pos()
handler::ha_rnd_pos()
handler::rnd_pos_by_record()
handler::ha_rnd_pos_by_record()
Rows_log_event::find_row()
Update_rows_log_event::do_exec_row()
Rows_log_event::do_apply_event()
Log_event::apply_event()
wsrep_apply_events()
and mutexes are taken in the order
lock_sys->mutex -> victim_trx->mutex -> victim_thread->LOCK_thd_data
When a normal KILL statement is executed, the stack is
innobase_kill_query()
kill_handlerton()
plugin_foreach_with_mask()
ha_kill_query()
THD::awake()
kill_one_thread()
and mutexes are
victim_thread->LOCK_thd_data -> lock_sys->mutex -> victim_trx->mutex
To fix the mutex order violation we kill the victim thd asynchronously,
from the manager thread
Ever since commit 947efe17ed
InnoDB no longer writes binlog position in one place.
It will not at all be written to the TRX_SYS page, and
instead it will be written to the undo log header page that
changes the transaction state.
trx_rseg_mem_restore(): Recover the information from the latest
written page.
I_S tables were materialized too late, an attempt to use table
statistics before the table was created caused a crash.
Let's move table creation up. it only needs read_set to
be calculated properly, this happens in JOIN::optimize_inner(),
after semijoin transformation.
Note that tables are not populated at that point, so most of the
statistics would make no sense anyway. But at least field sizes
will be correct. And it won't crash.
innodb_io_capacity_update(): When the requested innodb_io_capacity
exceeds innodb_io_capacity_max and is more than half the maximum,
do not double it for computing innodb_io_capacity_max.
This integer arithmetics overflow was introduced in
commit 0f32299437 (MDEV-7035).
No test case is added, because sizeof(ulong) varies between platforms.
Database name mismatch happens while opening the table for
virtual column computation. Because table_name_parse() returns
the length of database and table name before converting the
filename to table name. This issue is caused by
commit 8b0d4cff07 (MDEV-15855).
Fix should be that table_name_parse() should return the length of
database and table name after converting the filename to table name.
Reviewed-by: Marko Mäkelä
When online alter rollbacks due to MDL time out, it doesn't mark the
index online status as ONLINE_INDEX_ABORTED. Concurrent update fails
to update the secondary index while building the entry.
InnoDB should check the online status of the secondary index before
building the secondary index entry.
Reviewed-by: Marko Mäkelä
Some DML operations on tables having unique secondary keys cause scanning
in the secondary index, for instance to find potential unique key violations
in the seconday index. This scanning may involve GAP locking in the index.
As this locking happens also when applying replication events in high priority
applier threads, there is a probabality for lock conflicts between two wsrep
high priority threads.
This PR avoids lock conflicts of high priority wsrep threads, which do
secondary index scanning e.g. for duplicate key detection.
The actual fix is the patch in sql_class.cc:thd_need_ordering_with(), where
we allow relaxed GAP locking protocol between wsrep high priority threads.
wsrep high priority threads (replication appliers, replayers and TOI processors)
are ordered by the replication provider, and they will not need serializability
support gained by secondary index GAP locks.
PR contains also a mtr test, which exercises a scenario where two replication
applier threads have a false positive conflict in GAP of unique secondary index.
The conflicting local committing transaction has to replay, and the test verifies
also that the replaying phase will not conflict with the latter repllication applier.
Commit also contains new test scenario for galera.galera_UK_conflict.test,
where replayer starts applying after a slave applier thread, with later seqno,
has advanced to commit phase. The applier and replayer have false positive GAP
lock conflict on secondary unique index, and replayer should ignore this.
This test scenario caused crash with earlier version in this PR, and to fix this,
the secondary index uniquenes checking has been relaxed even further.
Now innodb trx_t structure has new member: bool wsrep_UK_scan, which is set to
true, when high priority thread is performing unique secondary index scanning.
The member trx_t::wsrep_UK_scan is defined inside WITH_WSREP directive, to make
it possible to prepare a MariaDB build where this additional trx_t member is
not present and is not used in the code base. trx->wsrep_UK_scan is set to true
only for the duration of function call for: lock_rec_lock() trx->wsrep_UK_scan
is used only in lock_rec_has_to_wait() function to relax the need to wait if
wsrep_UK_scan is set and conflicting transaction is also high priority.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>