information schema table.
The get_schema_views_record() function fills records in the view table of
the informations schema with data about given views. Among other info
the is_updatable flag is set. But the check whether the view is updatable or
not wasn't covering all cases thus sometimes providing wrong info.
This might led to a user confusion.
Now the get_schema_views_record function additionally calls to the
view->can_be_merge() function to find out whether the view can be updated or
not.
This bug may manifest itself for select queries over a multi-table view
that includes an ORDER BY clause in its definition. If the select list of
the query contains references to the same view column with different
aliases the names of the columns in the result output will be nevertheless
the same, coinciding with one of the alias.
The bug happened because the method Item_ref::get_tmp_table_item that
was inherited by the class Item_direct_view_ref ignored the fact that
the name of the view column reference must be inherited by the fields
of the temporary table that was created in order to get the result rows
sorted.
- BUG#11986: Stored routines and triggers can fail if the code
has a non-ascii symbol
- BUG#16291: mysqldump corrupts string-constants with non-ascii-chars
- BUG#19443: INFORMATION_SCHEMA does not support charsets properly
- BUG#21249: Character set of SP-var can be ignored
- BUG#25212: Character set of string constant is ignored (stored routines)
- BUG#25221: Character set of string constant is ignored (triggers)
There were a few general problems that caused these bugs:
1. Character set information of the original (definition) query for views,
triggers, stored routines and events was lost.
2. mysqldump output query in client character set, which can be
inappropriate to encode definition-query.
3. INFORMATION_SCHEMA used strings with mixed encodings to display object
definition;
1. No query-definition-character set.
In order to compile query into execution code, some extra data (such as
environment variables or the database character set) is used. The problem
here was that this context was not preserved. So, on the next load it can
differ from the original one, thus the result will be different.
The context contains the following data:
- client character set;
- connection collation (character set and collation);
- collation of the owner database;
The fix is to store this context and use it each time we parse (compile)
and execute the object (stored routine, trigger, ...).
2. Wrong mysqldump-output.
The original query can contain several encodings (by means of character set
introducers). The problem here was that we tried to convert original query
to the mysqldump-client character set.
Moreover, we stored queries in different character sets for different
objects (views, for one, used UTF8, triggers used original character set).
The solution is
- to store definition queries in the original character set;
- to change SHOW CREATE statement to output definition query in the
binary character set (i.e. without any conversion);
- introduce SHOW CREATE TRIGGER statement;
- to dump special statements to switch the context to the original one
before dumping and restore it afterwards.
Note, in order to preserve the database collation at the creation time,
additional ALTER DATABASE might be used (to temporary switch the database
collation back to the original value). In this case, ALTER DATABASE
privilege will be required. This is a backward-incompatible change.
3. INFORMATION_SCHEMA showed non-UTF8 strings
The fix is to generate UTF8-query during the parsing, store it in the object
and show it in the INFORMATION_SCHEMA.
Basically, the idea is to create a copy of the original query convert it to
UTF8. Character set introducers are removed and all text literals are
converted to UTF8.
This UTF8 query is intended to provide user-readable output. It must not be
used to recreate the object. Specialized SHOW CREATE statements should be
used for this.
The reason for this limitation is the following: the original query can
contain symbols from several character sets (by means of character set
introducers).
Example:
- original query:
CREATE VIEW v1 AS SELECT _cp1251 'Hello' AS c1;
- UTF8 query (for INFORMATION_SCHEMA):
CREATE VIEW v1 AS SELECT 'Hello' AS c1;
The abort happened when a query contained a conjunctive predicate
of the form 'view column = constant' in the WHERE condition and
the grouping list also contained a reference to a view column yet
a different one.
Removed the failing assertion as invalid in a general case.
Also fixed a bug that prevented applying some optimization for grouping
queries using views. If the WHERE condition of such a query contains
a conjunctive condition of the form 'view column = constant' and
this view column is used in the grouping list then grouping by this
column can be eliminated. The bug blocked performing this elimination.
SHOW CREATE TABLE fails
Underlying table names, that merge engine fails to open were not
reported.
With this fix CHECK TABLE issued against merge table reports all
underlying table names that it fails to open. Other statements
are unaffected, that is underlying table names are not included
into error message.
This fix doesn't solve SHOW CREATE TABLE issue.
ON conditions from JOIN expression were ignored at CHECK OPTION
check when updating a multi-table view with CHECK OPTION.
The st_table_list::prep_check_option function has been
modified to to take into account ON conditions at CHECK OPTION check
It was also changed to build the check option condition only once
for any update used in PS/SP.
The result of the CHECK OPTION condition evaluation over an
updated record and records of merged tables was arbitrary and
dependant on the order of records in the merged tables during
the execution of SELECT statement.
The CHECK OPTION expression was evaluated over expired record
buffers (with arbitrary data in the fields).
Rowids of tables used in the CHECK OPTION expression were
added to temporary table rows. The multi_update::do_updates()
method was modified to restore necessary record buffers
before evaluation of the CHECK OPTION condition.
Integer values with 10 digits may or may not fit into an int column
(e.g. 2147483647 vs 6147483647).
Thus when creating a temp table column for such an int we must
use bigint instead.
Fixed to use bigint.
Also subsituted a "magic number" with a named constant.
CHECK OPTION and a subquery in WHERE condition.
The abort was triggered by setting the value of join->tables for
subqueries in the function JOIN::cleanup. This function was called
after an invocation of the JOIN::join_free method for subqueries
used in WHERE condition.
- added join cache indication in EXPLAIN (Extra column).
- prefer filesort over full scan over
index for ORDER BY (because it's faster).
- when switching from REF to RANGE because
RANGE uses longer key turn off sort on
the head table only as the resulting
RANGE access is a candidate for join cache
and we don't want to disable it by sorting
on the first table only.
When merging views into the enclosing statement
the ORDER BY clause of the view is merged to the
parent's ORDER BY clause.
However when the VIEW is merged into an UNION
branch the ORDER BY should be ignored.
Use of ORDER BY for individual SELECT statements
implies nothing about the order in which the rows
appear in the final result because UNION by default
produces unordered set of rows.
Fixed by ignoring the ORDER BY clause from the merge
view when expanded in an UNION branch.
Support of views wasn't implemented for the TRUNCATE statement.
Now TRUNCATE on views has the same semantics as DELETE FROM view:
mysql_truncate() checks whether the table is a view and falls back
to delete if so.
In order to initialize properly the LEX::updatable for a view
st_lex::can_use_merged() now allows usage of merged views for the
TRUNCATE statement.
for bug#16425: Events: no DEFINER clause. The problem was that there
were two rules
ALTER view_algorithm_opt definer ... VIEW ...
ALTER definer EVENT ...
so when there was 'ALTER definer' in the input it was unclear if empty
view_algorithm_opt should be executed or not.
We solve this by introducing three distinct rules
ALTER view_algorithm definer ... VIEW ...
ALTER definer ... VIEW ...
ALTER definer EVENT ...
that remove the ambiguity.
The problem was that some facilities (like CONVERT_TZ() function or
server HELP statement) may require implicit access to some tables in
'mysql' database. This access was done by ordinary means of adding
such tables to the list of tables the query is going to open.
However, if we issued LOCK TABLES before that, we would get "table
was not locked" error trying to open such implicit tables.
The solution is to treat certain tables as MySQL system tables, like
we already do for mysql.proc. Such tables may be opened for reading
at any moment regardless of any locks in effect. The cost of this is
that system table may be locked for writing only together with other
system tables, it is disallowed to lock system tables for writing and
have any other lock on any other table.
After this patch the following tables are treated as MySQL system
tables:
mysql.help_category
mysql.help_keyword
mysql.help_relation
mysql.help_topic
mysql.proc (it already was)
mysql.time_zone
mysql.time_zone_leap_second
mysql.time_zone_name
mysql.time_zone_transition
mysql.time_zone_transition_type
These tables are now opened with open_system_tables_for_read() and
closed with close_system_tables(), or one table may be opened with
open_system_table_for_update() and closed with close_thread_tables()
(the latter is used for mysql.proc table, which is updated as part of
normal MySQL server operation). These functions may be used when
some tables were opened and locked already.
NOTE: online update of time zone tables is not possible during
replication, because there's no time zone cache flush neither on LOCK
TABLES, nor on FLUSH TABLES, so the master may serve stale time zone
data from cache, while on slave updated data will be loaded from the
time zone tables.
Bug 18914 (Calling certain SPs from triggers fail)
Bug 20713 (Functions will not not continue for SQLSTATE VALUE '42S02')
Bug 21825 (Incorrect message error deleting records in a table with a
trigger for inserting)
Bug 22580 (DROP TABLE in nested stored procedure causes strange dependency
error)
Bug 25345 (Cursors from Functions)
This fix resolves a long standing issue originally reported with bug 8407,
which affect the behavior of Stored Procedures, Stored Functions and Trigger
in many different ways, causing symptoms reported by all the bugs listed.
In all cases, the root cause of the problem traces back to 8407 and how the
server locks tables involved with sub statements.
Prior to this fix, the implementation of stored routines would:
- compute the transitive closure of all the tables referenced by a top level
statement
- open and lock all the tables involved
- execute the top level statement
"transitive closure of tables" means collecting:
- all the tables,
- all the stored functions,
- all the views,
- all the table triggers
- all the stored procedures
involved, and recursively inspect these objects definition to find more
references to more objects, until the list of every object referenced does
not grow any more.
This mechanism is known as "pre-locking" tables before execution.
The motivation for locking all the tables (possibly) used at once is to
prevent dead locks.
One problem with this approach is that, if the execution path the code
really takes during runtime does not use a given table, and if the table is
missing, the server would not execute the statement.
This in particular has a major impact on triggers, since a missing table
referenced by an update/delete trigger would prevent an insert trigger to run.
Another problem is that stored routines might define SQL exception handlers
to deal with missing tables, but the server implementation would never give
user code a chance to execute this logic, since the routine is never
executed when a missing table cause the pre-locking code to fail.
With this fix, the internal implementation of the pre-locking code has been
relaxed of some constraints, so that failure to open a table does not
necessarily prevent execution of a stored routine.
In particular, the pre-locking mechanism is now behaving as follows:
1) the first step, to compute the transitive closure of all the tables
possibly referenced by a statement, is unchanged.
2) the next step, which is to open all the tables involved, only attempts
to open the tables added by the pre-locking code, but silently fails without
reporting any error or invoking any exception handler is the table is not
present. This is achieved by trapping internal errors with
Prelock_error_handler
3) the locking step only locks tables that were successfully opened.
4) when executing sub statements, the list of tables used by each statements
is evaluated as before. The tables needed by the sub statement are expected
to be already opened and locked. Statement referencing tables that were not
opened in step 2) will fail to find the table in the open list, and only at
this point will execution of the user code fail.
5) when a runtime exception is raised at 4), the instruction continuation
destination (the next instruction to execute in case of SQL continue
handlers) is evaluated.
This is achieved with sp_instr::exec_open_and_lock_tables()
6) if a user exception handler is present in the stored routine, that
handler is invoked as usual, so that ER_NO_SUCH_TABLE exceptions can be
trapped by stored routines. If no handler exists, then the runtime execution
will fail as expected.
With all these changes, a side effect is that view security is impacted, in
two different ways.
First, a view defined as "select stored_function()", where the stored
function references a table that may not exist, is considered valid.
The rationale is that, because the stored function might trap exceptions
during execution and still return a valid result, there is no way to decide
when the view is created if a missing table really cause the view to be invalid.
Secondly, testing for existence of tables is now done later during
execution. View security, which consist of trapping errors and return a
generic ER_VIEW_INVALID (to prevent disclosing information) was only
implemented at very specific phases covering *opening* tables, but not
covering the runtime execution. Because of this existing limitation,
errors that were previously trapped and converted into ER_VIEW_INVALID are
not trapped, causing table names to be reported to the user.
This change is exposing an existing problem, which is independent and will
be resolved separately.