The problem is that passing anything other than a integer to a limit
clause in a prepared statement would fail. This limitation was introduced
to avoid replication problems (e.g: replicating the statement with a
string argument would cause a parse failure in the slave).
The solution is to convert arguments to the limit clause to a integer
value and use this converted value when persisting the query to the log.
The problem is that CREATE VIEW statements inside prepared statements
weren't being expanded during the prepare phase, which leads to objects
not being allocated in the appropriate memory arenas.
The solution is to perform the validation of CREATE VIEW statements
during the prepare phase of a prepared statement. The validation
during the prepare phase assures that transformations of the parsed
tree will use the permanent arena of the prepared statement.
The unsignedness of large integer user variables was not being
properly preserved when feeded to prepared statements. This was
happening because the unsigned flags wasn't being updated when
converting the user variable is converted to a parameter.
The solution is to copy the unsigned flag when converting the
user variable to a parameter and take the unsigned flag into
account when converting the integer to a string.
Default values of variables were not subject to upper/lower bounds
and step, while setting variables was. Bounds and step are also
applied to defaults now; defaults are corrected quietly, values
given by the user are corrected, and a correction-warning is thrown
as needed. Lastly, very large values could wrap around, starting
from 0 again. They are bounded at the maximum value for the
respective data-type now if no lower maximum is specified in the
variable's definition.
error evaluating WHERE"
DELETE with a subquery in WHERE clause would sometimes ignore subquery
evaluation error and proceed with deletion.
The fix is to check for an error after evaluation of the WHERE clause
in DELETE.
Addressed review comments.
Bug#25422 (Hang with log tables)
Bug 17876 (Truncating mysql.slow_log in a SP after using cursor locks the
thread)
Bug 23044 (Warnings on flush of a log table)
Bug 29129 (Resetting general_log while the GLOBAL READ LOCK is set causes
a deadlock)
Prior to this fix, the server would hang when performing concurrent
ALTER TABLE or TRUNCATE TABLE statements against the LOG TABLES,
which are mysql.general_log and mysql.slow_log.
The root cause traces to the following code:
in sql_base.cc, open_table()
if (table->in_use != thd)
{
/* wait_for_condition will unlock LOCK_open for us */
wait_for_condition(thd, &LOCK_open, &COND_refresh);
}
The problem with this code is that the current implementation of the
LOGGER creates 'fake' THD objects, like
- Log_to_csv_event_handler::general_log_thd
- Log_to_csv_event_handler::slow_log_thd
which are not associated to a real thread running in the server,
so that waiting for these non-existing threads to release table locks
cause the dead lock.
In general, the design of Log_to_csv_event_handler does not fit into the
general architecture of the server, so that the concept of general_log_thd
and slow_log_thd has to be abandoned:
- this implementation does not work with table locking
- it will not work with commands like SHOW PROCESSLIST
- having the log tables always opened does not integrate well with DDL
operations / FLUSH TABLES / SET GLOBAL READ_ONLY
With this patch, the fundamental design of the LOGGER has been changed to:
- always open and close a log table when writing a log
- remove totally the usage of fake THD objects
- clarify how locking of log tables is implemented in general.
See WL#3984 for details related to the new locking design.
Additional changes (misc bugs exposed and fixed):
1)
mysqldump which would ignore some tables in dump_all_tables_in_db(),
but forget to ignore the same in dump_all_views_in_db().
2)
mysqldump would also issue an empty "LOCK TABLE" command when all the tables
to lock are to be ignored (numrows == 0), instead of not issuing the query.
3)
Internal errors handlers could intercept errors but not warnings
(see sql_error.cc).
4)
Implementing a nested call to open tables, for the performance schema tables,
exposed an existing bug in remove_table_from_cache(), which would perform:
in_use->some_tables_deleted=1;
against another thread, without any consideration about thread locking.
This call inside remove_table_from_cache() was not required anyway,
since calling mysql_lock_abort() takes care of aborting -- cleanly -- threads
that might hold a lock on a table.
This line (in_use->some_tables_deleted=1) has been removed.
- BUG#11986: Stored routines and triggers can fail if the code
has a non-ascii symbol
- BUG#16291: mysqldump corrupts string-constants with non-ascii-chars
- BUG#19443: INFORMATION_SCHEMA does not support charsets properly
- BUG#21249: Character set of SP-var can be ignored
- BUG#25212: Character set of string constant is ignored (stored routines)
- BUG#25221: Character set of string constant is ignored (triggers)
There were a few general problems that caused these bugs:
1. Character set information of the original (definition) query for views,
triggers, stored routines and events was lost.
2. mysqldump output query in client character set, which can be
inappropriate to encode definition-query.
3. INFORMATION_SCHEMA used strings with mixed encodings to display object
definition;
1. No query-definition-character set.
In order to compile query into execution code, some extra data (such as
environment variables or the database character set) is used. The problem
here was that this context was not preserved. So, on the next load it can
differ from the original one, thus the result will be different.
The context contains the following data:
- client character set;
- connection collation (character set and collation);
- collation of the owner database;
The fix is to store this context and use it each time we parse (compile)
and execute the object (stored routine, trigger, ...).
2. Wrong mysqldump-output.
The original query can contain several encodings (by means of character set
introducers). The problem here was that we tried to convert original query
to the mysqldump-client character set.
Moreover, we stored queries in different character sets for different
objects (views, for one, used UTF8, triggers used original character set).
The solution is
- to store definition queries in the original character set;
- to change SHOW CREATE statement to output definition query in the
binary character set (i.e. without any conversion);
- introduce SHOW CREATE TRIGGER statement;
- to dump special statements to switch the context to the original one
before dumping and restore it afterwards.
Note, in order to preserve the database collation at the creation time,
additional ALTER DATABASE might be used (to temporary switch the database
collation back to the original value). In this case, ALTER DATABASE
privilege will be required. This is a backward-incompatible change.
3. INFORMATION_SCHEMA showed non-UTF8 strings
The fix is to generate UTF8-query during the parsing, store it in the object
and show it in the INFORMATION_SCHEMA.
Basically, the idea is to create a copy of the original query convert it to
UTF8. Character set introducers are removed and all text literals are
converted to UTF8.
This UTF8 query is intended to provide user-readable output. It must not be
used to recreate the object. Specialized SHOW CREATE statements should be
used for this.
The reason for this limitation is the following: the original query can
contain symbols from several character sets (by means of character set
introducers).
Example:
- original query:
CREATE VIEW v1 AS SELECT _cp1251 'Hello' AS c1;
- UTF8 query (for INFORMATION_SCHEMA):
CREATE VIEW v1 AS SELECT 'Hello' AS c1;
SHOW CREATE TABLE fails
Underlying table names, that merge engine fails to open were not
reported.
With this fix CHECK TABLE issued against merge table reports all
underlying table names that it fails to open. Other statements
are unaffected, that is underlying table names are not included
into error message.
This fix doesn't solve SHOW CREATE TABLE issue.
Bug#4968 ""Stored procedure crash if cursor opened on altered table"
Bug#6895 "Prepared Statements: ALTER TABLE DROP COLUMN does nothing"
Bug#19182 "CREATE TABLE bar (m INT) SELECT n FROM foo; doesn't work from
stored procedure."
Bug#19733 "Repeated alter, or repeated create/drop, fails"
Bug#22060 "ALTER TABLE x AUTO_INCREMENT=y in SP crashes server"
Bug#24879 "Prepared Statements: CREATE TABLE (UTF8 KEY) produces a
growing key length" (this bug is not fixed in 5.0)
Re-execution of CREATE DATABASE, CREATE TABLE and ALTER TABLE
statements in stored routines or as prepared statements caused
incorrect results (and crashes in versions prior to 5.0.25).
In 5.1 the problem occured only for CREATE DATABASE, CREATE TABLE
SELECT and CREATE TABLE with INDEX/DATA DIRECTOY options).
The problem of bugs 4968, 19733, 19282 and 6895 was that functions
mysql_prepare_table, mysql_create_table and mysql_alter_table are not
re-execution friendly: during their operation they modify contents
of LEX (members create_info, alter_info, key_list, create_list),
thus making the LEX unusable for the next execution.
In particular, these functions removed processed columns and keys from
create_list, key_list and drop_list. Search the code in sql_table.cc
for drop_it.remove() and similar patterns to find evidence.
The fix is to supply to these functions a usable copy of each of the
above structures at every re-execution of an SQL statement.
To simplify memory management, LEX::key_list and LEX::create_list
were added to LEX::alter_info, a fresh copy of which is created for
every execution.
The problem of crashing bug 22060 stemmed from the fact that the above
metnioned functions were not only modifying HA_CREATE_INFO structure
in LEX, but also were changing it to point to areas in volatile memory
of the execution memory root.
The patch solves this problem by creating and using an on-stack
copy of HA_CREATE_INFO in mysql_execute_command.
Additionally, this patch splits the part of mysql_alter_table
that analizes and rewrites information from the parser into
a separate function - mysql_prepare_alter_table, in analogy with
mysql_prepare_table, which is renamed to mysql_prepare_create_table.
This patch corrects errors that occurred in a local manual merge.
It adds the originator column in the results of the SHOW EVENTS command
for a series of tests.
The only code change is to correct references to the classname in
enums.
BUG#26429: SHOW CREATE EVENT is incorrect for an event that
STARTS NOW()
BUG#26431: Impossible to re-create an event from backup if its
STARTS clause is in the past
WL#3698: Events: execution in local time zone
The problem was that local times specified by the user in AT, STARTS
and ENDS of CREATE EVENT/ALTER EVENT statement were converted to UTC,
and the original time zone was forgotten. This way, event scheduler
couldn't honor Daylight Saving Time shifts, and times shown to the
user were also in UTC. Additionally, CREATE EVENT didn't allow times
in the past, thus preventing straightforward event restoration from
old backups.
This patch reworks event scheduler time computations, performing them
in the time zone associated with the event. Also it allows times to
be in the past.
The patch adds time_zone column to mysql.event table.
NOTE: The patch is almost final, but the bug#9953 should be pushed
first.
During statement prepare phase the tables were locked as if the
statement is being executed, however this is not necessary.
The solution is to not lock tables on statement prepare phase.
Opening tables is enough to prevent DDL on them, and during statement
prepare we do not access nor modify any data.
Fixed compile-pentium64 scripts
Fixed wrong estimate of update_with_key_prefix in sql-bench
Merge bk-internal.mysql.com:/home/bk/mysql-5.1 into mysql.com:/home/my/mysql-5.1
Fixed unsafe define of uint4korr()
Fixed that --extern works with mysql-test-run.pl
Small trivial cleanups
This also fixes a bug in counting number of rows that are updated when we have many simultanous queries
Move all connection handling and command exectuion main loop from sql_parse.cc to sql_connection.cc
Split handle_one_connection() into reusable sub functions.
Split create_new_thread() into reusable sub functions.
Added thread_scheduler; Preliminary interface code for future thread_handling code.
Use 'my_thread_id' for internal thread id's
Make thr_alarm_kill() to depend on thread_id instead of thread
Make thr_abort_locks_for_thread() depend on thread_id instead of thread
In store_globals(), set my_thread_var->id to be thd->thread_id.
Use my_thread_var->id as basis for my_thread_name()
The above changes makes the connection we have between THD and threads more soft.
Added a lot of DBUG_PRINT() and DBUG_ASSERT() functions
Fixed compiler warnings
Fixed core dumps when running with --debug
Removed setting of signal masks (was never used)
Made event code call pthread_exit() (portability fix)
Fixed that event code doesn't call DBUG_xxx functions before my_thread_init() is called.
Made handling of thread_id and thd->variables.pseudo_thread_id uniform.
Removed one common 'not freed memory' warning from mysqltest
Fixed a couple of usage of not initialized warnings (unlikely cases)
Suppress compiler warnings from bdb and (for the moment) warnings from ndb
on duplicate key".
INSERT ... SELECT ... ON DUPLICATE KEY UPDATE which was used in
stored routine or as prepared statement and which in its ON DUPLICATE
KEY clause erroneously tried to assign value to a column mentioned only
in its SELECT part was properly emitting error on the first execution
but succeeded on the second and following executions.
Code which is responsible for name resolution of fields mentioned in
UPDATE clause (e.g. see select_insert::prepare()) modifies table list
and Name_resolution_context used in this process. It uses
Name_resolution_context_state::save_state/restore_state() to revert
these modifications. Unfortunately those two methods failed to revert
properly modifications to TABLE_LIST::next_name_resolution_table
and this broke name resolution process for successive executions.
This patch fixes Name_resolution_context_state::save_state/restore_state()
in such way that it properly handles TABLE_LIST::next_name_resolution_table.
Blocked evaluation of constant objects of the classes
Item_func_is_null and Item_is_not_null_test at the
prepare phase in the cases when the objects used subqueries.
Removed an assertion that was not valid for the cases where the query
in a prepared statement contained a single-row non-correlated
subquery that was used as an argument of the IS NULL predicate.