The unsignedness of large integer user variables was not being
properly preserved when feeded to prepared statements. This was
happening because the unsigned flags wasn't being updated when
converting the user variable is converted to a parameter.
The solution is to copy the unsigned flag when converting the
user variable to a parameter and take the unsigned flag into
account when converting the integer to a string.
The problem is that one can not create a stored routine if sql_mode
contains NO_ENGINE_SUBSTITUTION or PAD_CHAR_TO_FULL_LENGTH. Also when
a event is created, the mode is silently lost if sql_mode contains one
of the aforementioned. This was happening because the table definitions
which stored sql_mode values weren't being updated to accept new values
of sql_mode.
The solution is to update, in a backwards compatible manner, the various
table definitions (columns) that store the sql_mode value to take into
account the new possible values. One incompatible change is that if a event
that is being created can't be stored to the mysql.event table, an error
will be raised.
The tests case also ensure that new SQL modes will be added to the mysql.proc
and mysql.event tables, otherwise the tests will fail.
The problem is that deprecated syntax warnings were not being
suppressed when the stored routine is being parsed for the first
execution. It's doesn't make sense to print out deprecated
syntax warnings when the routine is being executed because this
kind of warning only matters when the routine is being created.
The solution is to suppress deprecated syntax warnings when
parsing the stored routine for loading into the cache (might
mean that the routine is being executed for the first time).
When issuing a column level grant on a table which require pre-locking the
server crashed.
The reason behind the crash was that data structures used by the lock api
wasn't properly reinitialized in the case of a column level grant.
pre-locking.
The crash was caused by an implicit assumption in check_table_access() that
table_list parameter is always a part of lex->query_tables.
When iterating over the passed list of tables, check_table_access() used
to stop only when lex->query_tables_last_not_own was reached.
In case of pre-locking, lex->query_tables_last_own is not NULL and points
to some element of lex->query_tables. When the parameter
of check_table_access() was not part of lex->query_tables, loop invariant
could never be violated and a crash would happen when the current table
pointer would point beyond the end of the provided list.
The fix is to change the signature of check_table_access() to also accept
a numeric limit of loop iterations, similarly to check_grant(), and
supply this limit in all places when we want to check access of tables
that are outside lex->query_tables, or just want to check access to one table.
The problem is that the Table_locks_waited was incremented only
when the lock request succeed. If a thread waiting for the lock
gets killed or the lock request is aborted, the variable would
not be incremented, leading to inaccurate values in the variable.
The solution is to increment the Table_locks_waited whenever the
lock request is queued. This reflects better the intended behavior
of the variable -- show how many times a lock was waited.