This commit updates default memory allocations size used with MEM_ROOT
objects to minimize the number of calls to malloc().
Changes:
- Updated MEM_ROOT block sizes in sql_const.h
- Updated MALLOC_OVERHEAD to also take into account the extra memory
allocated by my_malloc()
- Updated init_alloc_root() to only take MALLOC_OVERHEAD into account as
buffer size, not MALLOC_OVERHEAD + sizeof(USED_MEM).
- Reset mem_root->first_block_usage if and only if first block was used.
- Increase MEM_ROOT buffers sized used by my_load_defaults, plugin_init,
Create_tmp_table, allocate_table_share, TABLE and TABLE_SHARE.
This decreases number of malloc calls during queries.
- Use a small buffer for THD->main_mem_root in THD::THD. This avoids
multiple malloc() call for new connections.
I tried the above changes on a complex select query with 12 tables.
The following shows the number of extra allocations that where used
to increase the size of the MEM_ROOT buffers.
Original code:
- Connection to MariaDB: 9 allocations
- First query run: 146 allocations
- Second query run: 24 allocations
Max memory allocated for thd when using with heap table: 61,262,408
Max memory allocated for thd when using Aria tmp table: 419,464
After changes:
Connection to MariaDB: 0 allocations
- First run: 25 allocations
- Second run: 7 allocations
Max memory allocated for thd when using with heap table: 61,347,424
Max memory allocated for thd when using Aria table: 529,168
The new code uses slightly more memory, but avoids memory fragmentation
and is slightly faster thanks to much fewer calls to malloc().
Reviewed-by: Sergei Golubchik <serg@mariadb.org>
Added Query_time (total time spent running queries) to status_variables.
Other things:
- Added SHOW_MICROSECOND_STATUS type that shows an ulonglong variable
in microseconds converted to a double (in seconds).
- Changed Busy_time and Cpu_time to use SHOW_MICROSECOND_STATUS, which
simplified the code and avoids some double divisions for each query.
Reviewed-by: Sergei Golubchik <serg@mariadb.org>
Ignore snapshot isolation conflict during fragment removal, before
streaming transaction commits. This happens when a streaming
transaction creates a read view that precedes the INSERTion of
fragments into the streaming_log table. Fragments are INSERTed
using a different transaction. These fragment are then removed
as part of COMMIT of the streaming transaction. This fragment
removal operation could fail when the fragments were not part
the transaction's read view, thus violating snapshot isolation.
Partial commit of the greater MDEV-34348 scope.
MDEV-34348: MariaDB is violating clang-16 -Wcast-function-type-strict
The functions queue_compare, qsort2_cmp, and qsort_cmp2
all had similar interfaces, and were used interchangable
and unsafely cast to one another.
This patch consolidates the functions all into the
qsort_cmp2 interface.
Reviewed By:
============
Marko Mäkelä <marko.makela@mariadb.com>
1. introduce alpha. the value of 1.1 is optimal, so hard-code it.
2. hard-code ef_construction=10, best by test
3. rename hnsw_max_connection_per_layer to mhnsw_max_edges_per_node
(max_connection is rather ambiguous in MariaDB) and add a help text
4. rename hnsw_ef_search to mhnsw_min_limit and add a help text
This commit includes the work done in collaboration with Hugo Wen from
Amazon:
MDEV-33408 Alter HNSW graph storage and fix memory leak
This commit changes the way HNSW graph information is stored in the
second table. Instead of storing connections as separate records, it now
stores neighbors for each node, leading to significant performance
improvements and storage savings.
Comparing with the previous approach, the insert speed is 5 times faster,
search speed improves by 23%, and storage usage is reduced by 73%, based
on ann-benchmark tests with random-xs-20-euclidean and
random-s-100-euclidean datasets.
Additionally, in previous code, vector objects were not released after
use, resulting in excessive memory consumption (over 20GB for building
the index with 90,000 records), preventing tests with large datasets.
Now ensure that vectors are released appropriately during the insert and
search functions. Note there are still some vectors that need to be
cleaned up after search query completion. Needs to be addressed in a
future commit.
All new code of the whole pull request, including one or several files
that are either new files or modified ones, are contributed under the
BSD-new license. I am contributing on behalf of my employer Amazon Web
Services, Inc.
As well as the commit:
Introduce session variables to manage HNSW index parameters
Three variables:
hnsw_max_connection_per_layer
hnsw_ef_constructor
hnsw_ef_search
ann-benchmark tool is also updated to support these variables in commit
https://github.com/HugoWenTD/ann-benchmarks/commit/e09784e for branch
https://github.com/HugoWenTD/ann-benchmarks/tree/mariadb-configurable
All new code of the whole pull request, including one or several files
that are either new files or modified ones, are contributed under the
BSD-new license. I am contributing on behalf of my employer Amazon Web
Services, Inc.
Co-authored-by: Hugo Wen <wenhug@amazon.com>
MDEV-33407 Parser support for vector indexes
The syntax is
create table t1 (... vector index (v) ...);
limitation:
* v is a binary string and NOT NULL
* only one vector index per table
* temporary tables are not supported
MDEV-33404 Engine-independent indexes: subtable method
added support for so-called "high level indexes", they are not visible
to the storage engine, implemented on the sql level. For every such
an index in a table, say, t1, the server implicitly creates a second
table named, like, t1#i#05 (where "05" is the index number in t1).
This table has a fixed structure, no frm, not accessible directly,
doesn't go into the table cache, needs no MDLs.
MDEV-33406 basic optimizer support for k-NN searches
for a query like SELECT ... ORDER BY func() optimizer will use
item_func->part_of_sortkey() to decide what keys can be used
to resolve ORDER BY.
create templates
thd->alloc<X>(n) to use instead of (X*)thd->alloc(sizeof(X)*n)
and the same for thd->calloc(). By the default the type is char,
so old usage of thd->alloc(size) works too.
When strict mode is enabled, all warnings during `INSERT` are
converted to errors regardless of their actual severity.
`WARN_SORTING_ON_TRUNCATED_LENGTH` is not considered severe enough
to be elevated to the ERROR level, and this commit fixes that
This task is inspired by the Percona implementation of
slow_query_log_always_write_time.
This task implements the variable log_slow_always_query_time (name
matching other MariaDB variables using the slow query log). The
default value for the variable is 31536000, which makes MariaDB
compatible with older installations.
For queries with execution time longer than log_slow_always_query_time
the variables log_slow_rate_limit and log_slow_min_examined_row_limit
will be ignored and the query will be written to the slow query log
if there is no other limitations (like log_slow_filter etc).
Other things:
- long_query_time internal variable renamed to log_slow_query_time.
- More descriptive information for "log_slow_query_time".
Post-fix for MDEV-35144.
Cannot allocate options values on the statement arena, because
HA_CREATE_INFO is shallow-copied for every execution, so if the
option_list was initially empty, it will be reset for every execution
and any values allocated on the statement arena will be lost.
Cannot allocate option values on the execution arena, because
HA_CREATE_INFO is shallow-copied for every execution, so if the
option_list was initially NOT empty, any values appended to the
end will be preserved and if they're on the execution arena their
content will be destroyed.
Let's use thd->change_item_tree() to save and restore necessary pointers
for every execution.
followup for 3da565c41d
Replication of non-transactional engines is experimental and
uses TOI. This naturally means that if there is open transaction
with transactional engine it's changes will be rolled back.
Fixed by adding error message if non-transactional engine
is part of multi-engine transaction with warning.
Signed-off-by: Julius Goryavsky <julius.goryavsky@mariadb.com>
During a query execution some sorting and grouping operations
on strings may be involved. System variable max_sort_length defines
the maximum number of bytes to use when comparing strings during
sorting/grouping. Thus, the comparable parts of strings may be less
than their actual size, so the results of the query may be not
sorted/grouped properly.
To indicate that some comparisons were done on a truncated lengths,
a new warning has been introduced with this commit.
If semi-sync is switched off then on while a transaction is
in-between binlogging and waiting for an ACK, the semi-sync state of
the transaction is removed, leading to a debug assertion that
indicates the transaction tried to wait, but cannot receive an ACK
signal. More specifically, when semi-sync is switched off, the
Active_tranx list is cleared (where a transaction adds an entry to
this list during binlogging), and each entry in this list saves the
thread which will wait for an ACK, and the thread has the COND
variable to signal to wake itself. So if the entry is lost, the
Ack_receiver thread won’t be able to find the thread to wake up when
an ACK comes in
The fix is to ensure that the entry exists before awaiting the ACK,
and if there is no entry, skip the wait. In debug builds, an
informative message is written explaining that the transaction is
skipping its wait. Additional debug-build only logic is added to
ensure that the cause of the missing entry is due to semi-sync being
turned off and on
Reviewed By:
============
Kristian Nielsen <knielsen@knielsen-hq.org>
The problem was that when using clang + asan, we do not get a correct value
for the thread stack as some local variables are not allocated at the
normal stack.
It looks like that for example clang 18.1.3, when compiling with
-O2 -fsanitize=addressan it puts local variables and things allocated by
alloca() in other areas than on the stack.
The following code shows the issue
Thread 6 "mariadbd" hit Breakpoint 3, do_handle_one_connection
(connect=0x5080000027b8,
put_in_cache=<optimized out>) at sql/sql_connect.cc:1399
THD *thd;
1399 thd->thread_stack= (char*) &thd;
(gdb) p &thd
(THD **) 0x7fffedee7060
(gdb) p $sp
(void *) 0x7fffef4e7bc0
The address of thd is 24M away from the stack pointer
(gdb) info reg
...
rsp 0x7fffef4e7bc0 0x7fffef4e7bc0
...
r13 0x7fffedee7060 140737185214560
r13 is pointing to the address of the thd. Probably some kind of
"local stack" used by the sanitizer
I have verified this with gdb on a recursive call that calls alloca()
in a loop. In this case all objects was stored in a local heap,
not on the stack.
To solve this issue in a portable way, I have added two functions:
my_get_stack_pointer() returns the address of the current stack pointer.
The code is using asm instructions for intel 32/64 bit, powerpc,
arm 32/64 bit and sparc 32/64 bit.
Supported compilers are gcc, clang and MSVC.
For MSVC 64 bit we are using _AddressOfReturnAddress()
As a fallback for other compilers/arch we use the address of a local
variable.
my_get_stack_bounds() that will return the address of the base stack
and stack size using pthread_attr_getstack() or NtCurrentTed() with
fallback to using the address of a local variable and user provided
stack size.
Server changes are:
- Moving setting of thread_stack to THD::store_globals() using
my_get_stack_bounds().
- Removing setting of thd->thread_stack, except in functions that
allocates a lot on the stack before calling store_globals(). When
using estimates for stack start, we reduce stack_size with
MY_STACK_SAFE_MARGIN (8192) to take into account the stack used
before calling store_globals().
I also added a unittest, stack_allocation-t, to verify the new code.
Reviewed-by: Sergei Golubchik <serg@mariadb.org>
Implement variable legacy_xa_rollback_at_disconnect to support
backwards compatibility for applications that rely on the pre-10.5
behavior for connection disconnect, which is to rollback the
transaction (in violation of the XA specification).
Signed-off-by: Kristian Nielsen <knielsen@knielsen-hq.org>
Field_blob::store() has special code for GROUP_CONCAT temporary table
(to store blob values in Blob_mem_storage - this prevents them
from being freed/overwritten when a next row is read).
Field_geom and Field_blob_compressed inherit from Field_blob but they
have their own ::store() method without this special Blob_mem_storage
support.
Considering that non-grouping CONCAT() of such fields converts
them to plain BLOB, let's do the same for GROUP_CONCAT. To do it,
Item_func_group_concat::setup will signal that it's creating
a temporary table for GROUP_CONCAT, and Field_blog::make_new_field()
override will create base Field_blob when under group concat.
Update `SESSION_USER()` behaviour to be comparable with `CURRENT_USER()`.
`SESSION_USER()` will return the user and host columns from `mysql.user`
used to authenticate the user when the session was created.
Historically `SESSION_USER()` was an alias of `USER()` function. The
main difference with `USER()` behaviour after this changes is that
`SESSION_USER()` now returns the host column from `mysql.user` instead of
the client host or ip.
NOTE: `SESSION_USER_IS_USER` old mode is added to make the change
backward compatible.
All new code of the whole pull request, including one or several files
that are either new files or modified ones, are contributed under the
BSD-new license. I am contributing on behalf of my employer
Amazon Web Services, Inc.
Fixed by checking handler_stats if it's active instead of
thd->variables.log_slow_verbosity & LOG_SLOW_VERBOSITY_ENGINE.
Reviewed-by: Sergei Petrunia <sergey@mariadb.com>
We have found that my_errno can be "passed" to the next commad in some cases.
It is practically impossible to check/fix all cases of my_errno in the server,
plugins and engines so we will reset it as we reset other errors.
The test case will be fixed by CSV engine fix so will be added with it
(see part2).