Problem: caching 00000000-00000099 dates as integer values we're
improperly shifting them up twice in the get_datetime_value().
Fix: don't shift cached DATETIME values up for the second time.
After adding an index the <VARBINARY> IN (SELECT <BINARY> ...)
clause returned a wrong result: the VARBINARY value was illegally padded
with zero bytes to the length of the BINARY column for the index search.
(<VARBINARY>, ...) IN (SELECT <BINARY>, ... ) clauses are affected too.
BETWEEN was more lenient with regard to what it accepted as a DATE/DATETIME
in comparisons than greater-than and less-than were. ChangeSet makes < >
comparisons similarly robust with regard to trailing garbage (" GMT-1")
and "missing" leading zeros. Now all three comparators behave similarly
in that they throw a warning for "junk" at the end of the data, but then
proceed anyway if possible. Before < > fell back on a string- (rather than
date-) comparison when a warning-condition was raised in the string-to-date
conversion. Now the fallback only happens on actual errors, while warning-
conditions still result in a warning being to delivered to the client.
The special case with NULL as a regular expression
was handled at prepare time. But in this special case
the item was not marked as fixed. This caused an assertion
at execution time.
Fixed my marking the item as fixed even when known to
return NULL at prepare time.
precision > 0 && scale <= precision'.
A sign of a resulting item of the IFNULL function was not
updated and the maximal length of this result was calculated
improperly. Correct algorithm was copy&pasted from the IF
function implementation.
type of the result.
There are several functions that accept parameters of different types.
The result field type of such functions was determined based on
the aggregated result type of its arguments. As the DATE and the DATETIME
types are represented by the STRING type, the result field type
of the affected functions was always STRING for DATE/DATETIME arguments.
The affected functions are COALESCE, IF, IFNULL, CASE, LEAST/GREATEST, CASE.
Now the affected functions aggregate the field types of their arguments rather
than their result types and return the result of aggregation as their result
field type.
The cached_field_type member variable is added to the number of classes to
hold the aggregated result field type.
The str_to_date() function's result field type now defaults to the
MYSQL_TYPE_DATETIME.
The agg_field_type() function is added. It aggregates field types with help
of the Field::field_type_merge() function.
The create_table_from_items() function now uses the
item->tmp_table_field_from_field_type() function to get the proper field
when the item is a function with a STRING result type.
Faster thr_alarm()
Added 'Opened_files' status variable to track calls to my_open()
Don't give warnings when running mysql_install_db
Added option --source-install to mysql_install_db
I had to do the following renames() as used polymorphism didn't work with Forte compiler on 64 bit systems
index_read() -> index_read_map()
index_read_idx() -> index_read_idx_map()
index_read_last() -> index_read_last_map()
The get_time_value function is added. It is used to obtain TIME values both
from items the can return time as an integer and from items that can return
time only as a string.
The Arg_comparator::compare_datetime function now uses pointer to a getter
function to obtain values to compare. Now this function is also used for
comparison of TIME values.
The get_value_func variable is added to the Arg_comparator class.
It points to a getter function for the DATE/DATETIME/TIME comparator.
Time values were compared by the BETWEEN function as strings. This led to a
wrong result in cases when some of arguments are less than 100 hours and other
are greater.
Now if all 3 arguments of the BETWEEN function are of the TIME type then
they are compared as integers.
Time values were compared as strings. This led to a wrong comparison
result when comparing values one of which is under 100 hours and another is
over 100 hours.
Now when the Arg_comparator::set_cmp_func function sees that both items to
compare are of the TIME type it sets the comparator to the
Arg_comparator::compare_e_int or the Arg_comparator::compare_int_unsigned
functions.
integer constants.
This bug is introduced by the fix for bug#16377. Before the fix the
Item_func_between::fix_length_and_dec method converted the second and third
arguments to the type of the first argument if they were constant and the first
argument is of the DATE/DATETIME type. That approach worked well for integer
constants and sometimes produced bad result for string constants. The fix for
the bug#16377 wrongly removed that code at all and as a result of this the
comparison of a DATETIME field and an integer constant was carried out in a
wrong way and sometimes led to wrong result sets.
Now the Item_func_between::fix_length_and_dec method converts the second and
third arguments to the type of the first argument if they are constant, the
first argument is of the DATE/DATETIME type and the DATETIME comparator isn't
applicable.
type assertion.
The bug was introduced by the patch for bug #16377.
The "+ INTERVAL" (Item_date_add_interval) function detects its result type
by the type of its first argument. But in some cases it returns STRING
as the result type. This happens when, for example, the first argument is a
DATE represented as string. All this makes the get_datetime_value()
function misinterpret such result and return wrong DATE/DATETIME value.
To avoid such cases in the fix for #16377 the code that detects correct result
field type on the first execution was added to the
Item_date_add_interval::get_date() function. Due to this the result
field type of the Item_date_add_interval item stored by the send_fields()
function differs from item's result field type at the moment when
the item is actually sent. It causes an assertion failure.
Now the get_datetime_value() detects that the DATE value is returned by
some item not only by checking the result field type but also by comparing
the returned value with the 100000000L constant - any DATE value should be
less than this value.
Removed result field type adjusting code from the
Item_date_add_interval::get_date() function.
When storing a large number to a FLOAT or DOUBLE field with fixed length, it could be incorrectly truncated if the field's length was greater than 31.
This patch also does some code cleanups to be able to reuse code which is common between Field_float::store() and Field_double::store().
is involved.
The Arg_comparator::compare_datetime() comparator caches its arguments if
they are constants i.e. const_item() returns true. The
Item_func_get_user_var::const_item() returns true or false based on
the current query_id and the query_id where the variable was created.
Thus even if a query can change its value its const_item() still will return
true. All this leads to a wrong comparison result when an object of the
Item_func_get_user_var class is involved.
Now the Arg_comparator::can_compare_as_dates() and the
get_datetime_value() functions never cache result of the GET_USER_VAR()
function (the Item_func_get_user_var class).
Made year 2000 handling more uniform
Removed year 2000 handling out from calc_days()
The above removes some bugs in date/datetimes with year between 0 and 200
Now we get a note when we insert a datetime value into a date column
For default values to CREATE, don't give errors for warning level NOTE
Fixed some compiler failures
Added library ws2_32 for windows compilation (needed if we want to compile with IOCP support)
Removed duplicate typedef TIME and replaced it with MYSQL_TIME
Better (more complete) fix for: Bug#21103 "DATE column not compared as DATE"
Fixed properly Bug#18997 "DATE_ADD and DATE_SUB perform year2K autoconversion magic on 4-digit year value"
Fixed Bug#23093 "Implicit conversion of 9912101 to date does not match cast(9912101 as date)"