between 5.0 and 5.1.
The problem was that in the patch for Bug#11986 it was decided
to store original query in UTF8 encoding for the INFORMATION_SCHEMA.
This approach however turned out to be quite difficult to implement
properly. The main problem is to preserve the same IS-output after
dump/restore.
So, the fix is to rollback to the previous functionality, but also
to fix it to support multi-character-set-queries properly. The idea
is to generate INFORMATION_SCHEMA-query from the item-tree after
parsing view declaration. The IS-query should:
- be completely in UTF8;
- not contain character set introducers.
For more information, see WL4052.
The problem is that CREATE VIEW statements inside prepared statements
weren't being expanded during the prepare phase, which leads to objects
not being allocated in the appropriate memory arenas.
The solution is to perform the validation of CREATE VIEW statements
during the prepare phase of a prepared statement. The validation
during the prepare phase assures that transformations of the parsed
tree will use the permanent arena of the prepared statement.
a table name.
The problem was that fill_defined_view_parts() did not return
an error if a table is going to be altered. That happened if
the table was already in the table cache. In that case,
open_table() returned non-NULL value (valid TABLE-instance from
the cache).
The fix is to ensure that an error is thrown even if the table
is in the cache.
(This is a backport of the original patch for 5.1)
The problem is that when a stored procedure is being parsed for
the first execution, the body is copied to a temporary buffer
which is disregarded sometime after the statement is parsed.
And during this parsing phase, the rule for CREATE VIEW was
holding a reference to the string being parsed for use during
the execution of the CREATE VIEW statement, leading to invalid
memory access later.
The solution is to allocate and copy the SELECT of a CREATE
VIEW statement using the thread memory root, which is set to
the permanent arena of the stored procedure.
a table name.
The problem was that fill_defined_view_parts() did not return
an error if a table is going to be altered. That happened if
the table was already in the table cache. In that case,
open_table() returned non-NULL value (valid TABLE-instance from
the cache).
The fix is to ensure that an error is thrown even if the table
is in the cache.
pre-locking.
The crash was caused by an implicit assumption in check_table_access() that
table_list parameter is always a part of lex->query_tables.
When iterating over the passed list of tables, check_table_access() used
to stop only when lex->query_tables_last_not_own was reached.
In case of pre-locking, lex->query_tables_last_own is not NULL and points
to some element of lex->query_tables. When the parameter
of check_table_access() was not part of lex->query_tables, loop invariant
could never be violated and a crash would happen when the current table
pointer would point beyond the end of the provided list.
The fix is to change the signature of check_table_access() to also accept
a numeric limit of loop iterations, similarly to check_grant(), and
supply this limit in all places when we want to check access of tables
that are outside lex->query_tables, or just want to check access to one table.
When executing drop view statement on the master, the statement is not written into bin-log if any error occurs, this could cause master slave inconsistence if any view has been dropped.
If some error occured and no view has been dropped, don't bin-log the statement, if at least one view has been dropped the query is bin-logged possible with an error.
When executing drop view statement on the master, the statement is written
into bin-log without checking for possible errors, so the statement would
always be bin-logged with error code cleared even if some error might occur,
for example, some of the views being dropped does not exist. This would cause
failure on the slave.
Writing bin-log after check for errors, if at least one view has been dropped
the query is bin-logged possible with an error.
Non-definer of a view was allowed to alter that view. Due to this the alterer
can elevate his access rights to access rights of the view definer and thus
modify data which he wasn't allowed to modify. A view defined with
SQL SECURITY INVOKER can't be used directly for access rights elevation.
But a user can first alter the view SQL code and then alter the view to
SQL SECURITY DEFINER and thus elevate his access rights. Due to this
altering a view with SQL SECURITY INVOKER is also prohibited.
Now the mysql_create_view function allows ALTER VIEW only to the view
definer or a super user.
causes full table lock on innodb table.
Also fixes Bug#28502 Triggers that update another innodb table
will block on X lock unnecessarily (duplciate).
Code review fixes.
Both bugs' synopses are misleading: InnoDB table is
not X locked. The statements, however, cannot proceed concurrently,
but this happens due to lock conflicts for tables used in triggers,
not for the InnoDB table.
If a user had an InnoDB table, and two triggers, AFTER UPDATE and
AFTER INSERT, competing for different resources (e.g. two distinct
MyISAM tables), then these two triggers would not be able to execute
concurrently. Moreover, INSERTS/UPDATES of the InnoDB table would
not be able to run concurrently.
The problem had other side-effects (see respective bug reports).
This behavior was a consequence of a shortcoming of the pre-locking
algorithm, which would not distinguish between different DML operations
(e.g. INSERT and DELETE) and pre-lock all the tables
that are used by any trigger defined on the subject table.
The idea of the fix is to extend the pre-locking algorithm to keep track,
for each table, what DML operation it is used for and not
load triggers that are known to never be fired.
- BUG#11986: Stored routines and triggers can fail if the code
has a non-ascii symbol
- BUG#16291: mysqldump corrupts string-constants with non-ascii-chars
- BUG#19443: INFORMATION_SCHEMA does not support charsets properly
- BUG#21249: Character set of SP-var can be ignored
- BUG#25212: Character set of string constant is ignored (stored routines)
- BUG#25221: Character set of string constant is ignored (triggers)
There were a few general problems that caused these bugs:
1. Character set information of the original (definition) query for views,
triggers, stored routines and events was lost.
2. mysqldump output query in client character set, which can be
inappropriate to encode definition-query.
3. INFORMATION_SCHEMA used strings with mixed encodings to display object
definition;
1. No query-definition-character set.
In order to compile query into execution code, some extra data (such as
environment variables or the database character set) is used. The problem
here was that this context was not preserved. So, on the next load it can
differ from the original one, thus the result will be different.
The context contains the following data:
- client character set;
- connection collation (character set and collation);
- collation of the owner database;
The fix is to store this context and use it each time we parse (compile)
and execute the object (stored routine, trigger, ...).
2. Wrong mysqldump-output.
The original query can contain several encodings (by means of character set
introducers). The problem here was that we tried to convert original query
to the mysqldump-client character set.
Moreover, we stored queries in different character sets for different
objects (views, for one, used UTF8, triggers used original character set).
The solution is
- to store definition queries in the original character set;
- to change SHOW CREATE statement to output definition query in the
binary character set (i.e. without any conversion);
- introduce SHOW CREATE TRIGGER statement;
- to dump special statements to switch the context to the original one
before dumping and restore it afterwards.
Note, in order to preserve the database collation at the creation time,
additional ALTER DATABASE might be used (to temporary switch the database
collation back to the original value). In this case, ALTER DATABASE
privilege will be required. This is a backward-incompatible change.
3. INFORMATION_SCHEMA showed non-UTF8 strings
The fix is to generate UTF8-query during the parsing, store it in the object
and show it in the INFORMATION_SCHEMA.
Basically, the idea is to create a copy of the original query convert it to
UTF8. Character set introducers are removed and all text literals are
converted to UTF8.
This UTF8 query is intended to provide user-readable output. It must not be
used to recreate the object. Specialized SHOW CREATE statements should be
used for this.
The reason for this limitation is the following: the original query can
contain symbols from several character sets (by means of character set
introducers).
Example:
- original query:
CREATE VIEW v1 AS SELECT _cp1251 'Hello' AS c1;
- UTF8 query (for INFORMATION_SCHEMA):
CREATE VIEW v1 AS SELECT 'Hello' AS c1;
ALTER VIEW is currently not supported as a prepared statement
and should be disabled as such as they otherwise could cause server crashes.
ALTER VIEW is currently not supported when called from stored
procedures or functions for related reasons and should also be disabled.
This patch disables these DDL statements and adjusts the appropriate test
cases accordingly.
Additional tests has been added to reflect on the fact that we do support
CREATE/ALTER/DROP TABLE for Prepared Statements (PS), Stored Procedures (SP)
and PS within SP.