ORDER BY could cause a server crash
Dependent subqueries like
SELECT COUNT(*) FROM t1, t2 WHERE t2.b
IN (SELECT DISTINCT t2.b FROM t2 WHERE t2.b = t1.a)
caused a memory leak proportional to the
number of outer rows.
The make_simple_join() function has been modified to
JOIN class method to store join_tab_reexec and
table_reexec values in the parent join only
(make_simple_join of tmp_join may access these values
via 'this' pointer of the parent JOIN).
NOTE: this patch doesn't include standard test case (this is
"out of memory" bug). See bug #42037 page for test cases.
Table could be marked dependent because it is
either 1) an inner table of an outer join, or 2) it is a part of
STRAIGHT_JOIN. In case of STRAIGHT_JOIN table->maybe_null should not
be assigned. The fix is to set st_table::maybe_null to 'true' only
for those tables which are used in outer join.
- Make send_row_on_empty_set() return FALSE when simplify_cond() has found out
that HAVING is always FALSE
re-committing to put the fix into 5.0 and 5.1
When constructing a key image stricter date checking (from sql_mode)
should not be enabled, because it will reject invalid dates that the
server would otherwise accept for searching when there's no index.
Fixed by disabling strict date checking when constructing a key image.
Fixed the usage of spatial data (and Point in specific) with
non-spatial indexes.
Several problems :
- The length of the Point class was not updated to include the
spatial reference system identifier. Fixed by increasing with 4
bytes.
- The storage length of the spatial columns was not accounting for
the length that is prepended to it. Fixed by treating the
spatial data columns as blobs (and thus increasing the storage
length)
- When creating the key image for comparison in index read wrong
key image was created (the one needed for and r-tree search,
not the one for b-tree/other search). Fixed by treating the
spatial data columns as blobs (and creating the correct kind of
image based on the index type).
This patch adds cost estimation for the queries with ORDER BY / GROUP BY
and LIMIT.
If there was a ref/range access to the table whose rows were required
to be ordered in the result set the optimizer always employed this access
though a scan by a different index that was compatible with the required
order could be cheaper to produce the first L rows of the result set.
Now for such queries the optimizer makes a choice between the cheapest
ref/range accesses not compatible with the given order and index scans
compatible with it.
- Don't call mysql_select() several times for the select that enumerates
a temporary table with the results of the UNION. Making this call for
every subquery execution caused O(#enumerated-rows-in-the-outer-query)
memory allocations.
- Instead, call join->reinit() and join->exec(), and
= disable constant table detection for such joins,
= provide special handling for table-less constant subqueries.
SELECT statement itself returns empty.
As a result of this bug 'SELECT AGGREGATE_FUNCTION(fld) ... GROUP BY'
can return one row instead of an empty result set.
When GROUP BY only has fields of constant tables
(with a single row), the optimizer deletes the group_list.
After that we lose the information about whether we had an
GROUP BY statement. Though it's important
as SELECT min(x) from empty_table; and
SELECT min(x) from empty_table GROUP BY y; have to return
different results - the first query should return one row,
second - an empty result set.
So here we add the 'group_optimized_away' flag to remember this case
when GROUP BY exists in the query and is removed
by the optimizer, and check this flag in end_send_group()
query / no aggregate of subquery
The optimizer counts the aggregate functions that
appear as top level expressions (in all_fields) in
the current subquery. Later it makes a list of these
that it uses to actually execute the aggregates in
end_send_group().
That count is used in several places as a flag whether
there are aggregates functions.
While collecting the above info it must not consider
aggregates that are not aggregated in the current
context. It must treat them as normal expressions
instead. Not doing that leads to incorrect data about
the query, e.g. running a query that actually has no
aggregate functions as if it has some (and hence is
expected to return only one row).
Fixed by ignoring the aggregates that are not aggregated
in the current context.
One other smaller omission discovered and fixed in the
process : the place of aggregation was not calculated for
user defined functions. Fixed by calling
Item_sum::init_sum_func_check() and
Item_sum::check_sum_func() as it's done for the rest of
the aggregate functions.
a crash when the left operand of the predicate is evaluated to NULL.
It happens when the rows from the inner tables (tables from the subquery)
are accessed by index methods with key values obtained by evaluation of
the left operand of the subquery predicate. When this predicate is
evaluated to NULL an alternative access with full table scan is used
to check whether the result set returned by the subquery is empty or not.
The crash was due to the fact the info about the access methods used for
regular key values was not properly restored after a switch back from the
full scan access method had occurred.
The patch restores this info properly.
The same problem existed for queries with IN subquery predicates if they
were used not at the top level of the queries.
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
Non-correlated scalar subqueries may get executed
in EXPLAIN at the optimization phase if they are
part of a right hand sargable expression.
If the scalar subquery uses a temp table to
materialize its results it will replace the
subquery structure from the parser with a simple
select from the materialization table.
As a result the EXPLAIN will crash as the
temporary materialization table is not to be shown
in EXPLAIN at all.
Fixed by preserving the original query structure
right after calling optimize() for scalar subqueries
with temp tables executed during EXPLAIN.
in index search MySQL was not explicitly
suppressing warnings. And if the context
happens to enable warnings (e.g. INSERT ..
SELECT) the warnings resulting from converting
the data the key is compared to are
reported to the client.
Fixed by suppressing warnings when converting
the data to the same type as the key parts.
away.
During optimization stage the WHERE conditions can be changed or even
be removed at all if they know for sure to be true of false. Thus they aren't
showed in the EXPLAIN EXTENDED which prints conditions after optimization.
Now if all elements of an Item_cond were removed this Item_cond is substituted
for an Item_int with the int value of the Item_cond.
If there were conditions that were totally optimized away then values of the
saved cond_value and having_value will be printed instead.
index_read(), index_read_idx(), index_read_last(), and
records_in_range() - instead of 'uint keylen' argument take
'ulonglong keypart_map', a bitmap showing which keyparts are
present in the key value.
Fallback method is provided for handlers that are lagging behind.
- Make the code produce correct result: use an array of triggers to turn on/off equalities for each
compared column. Also turn on/off optimizations based on those equalities.
- Make EXPLAIN output show "Full scan on NULL key" for tables for which we switch between
ref/unique_subquery/index_subquery and ALL access.
- index_subquery engine now has HAVING clause when it is needed, and it is
displayed in EXPLAIN EXTENDED
- Fix incorrect presense of "Using index" for index/unique-based subqueries (BUG#22930)
// bk trigger note: this commit refers to BUG#24127
Corrected spelling in copyright text
Makefile.am:
Don't update the files from BitKeeper
Many files:
Removed "MySQL Finland AB & TCX DataKonsult AB" from copyright header
Adjusted year(s) in copyright header
Many files:
Added GPL copyright text
Removed files:
Docs/Support/colspec-fix.pl
Docs/Support/docbook-fixup.pl
Docs/Support/docbook-prefix.pl
Docs/Support/docbook-split
Docs/Support/make-docbook
Docs/Support/make-makefile
Docs/Support/test-make-manual
Docs/Support/test-make-manual-de
Docs/Support/xwf
Evaluate "NULL IN (SELECT ...)" in a special way: Disable pushed-down
conditions and their "consequences":
= Do full table scans instead of unique_[index_subquery] lookups.
= Change appropriate "ref_or_null" accesses to full table scans in
subquery's joins.
Also cache value of NULL IN (SELECT ...) if the SELECT is not correlated
wrt any upper select.
list using a function
When executing dependent subqueries they are re-inited and re-exec() for
each row of the outer context.
The cause for the bug is that during subquery reinitialization/re-execution,
the optimizer reallocates JOIN::join_tab, JOIN::table in make_simple_join()
and the local variable in 'sortorder' in create_sort_index(), which is
allocated by make_unireg_sortorder().
Care must be taken not to allocate anything into the thread's memory pool
while re-initializing query plan structures between subquery re-executions.
All such items mush be cached and reused because the thread's memory pool
is freed at the end of the whole query.
Note that they must be cached and reused even for queries that are not
otherwise cacheable because otherwise it will grow the thread's memory
pool every time a cacheable query is re-executed.
We provide additional members to the JOIN structure to store references
to the items that need to be cached.