in fact, in MariaDB it cannot, but it can show spurious slaves
in SHOW SLAVE HOSTS.
slave was registered in COM_REGISTER_SLAVE and un-registered after
COM_BINLOG_DUMP. If there was no COM_BINLOG_DUMP, it would never
unregister.
This is a backport of the applicable part of
commit 93475aff8d and
commit 2c39f69d34
from 10.4.
Before 10.4 and Galera 4, WSREP_ON is a macro that points to
a global Boolean variable, so it is not that expensive to
evaluate, but we will add an unlikely() hint around it.
WSREP_ON_NEW: Remove. This macro was introduced in
commit c863159c32
when reverting WSREP_ON to its previous definition.
We replace some use of WSREP_ON with WSREP(thd), like it was done
in 93475aff8d. Note: the macro
WSREP() in 10.1 is equivalent to WSREP_NNULL() in 10.4.
Item_func_rand::seed_random(): Avoid invoking current_thd
when WSREP is not enabled.
The string doesn't appear to be null-terminated when binlog checksums are
enabled. This causes a corrupt binlog name in the error message when a
slave is ahead of the master.
The problem happens when MariaDB master replicates writes for only non InnoDB
tables (e.g. writes to MyISAM table(s)). Async slave node, in Galera cluster,
can apply these writes successfully, but it will, in the end, write gtid position in
mysql.gtid_slave_pos table. mysql.gtid_slave_pos table is InnoDB engine, and
this write makes innodb handlerton part of the replicated "transaction".
Note that wsrep patch identifies that write to gtid_slave_pos should not be replicated
and skips appending wsrep keys for these writes. However, as InnoDB was present
in the transaction, and there are replication events (for MyISAM table) in transaction
cache, but there are no appended keys, wsrep raises an error, and this makes the söave
thread to stop.
The fix is simply to not treat it as an error if async slave tries to replicate a write
set with binlog events, but no keys. We just skip wsrep replication and return successfully.
This commit contains also a mtr test which forces mysql.gtid_slave_pos table isto be
of InnoDB engine, and executes MyISAM only write through asyn replication.
There is additional fix for declaring IO and background slave threads as non wsrep.
These threads should not write anything for wsrep replication, and this is just a safeguard
to make sure nothing leaks into cluster from these slave threads.
This PR contains a mtr test for reproducing a failure with replicating create table as select statement (CTAS) through asynchronous mariadb replication to mariadb galera cluster.
The problem happens when CTAS replication contains both create table statement followed by row events for populating the table. In such situation, the galera node operating as mariadb replication slave, will first replicate only the create table part into the cluster, and then perform another replication containing both the create table and row events. This will lead all other nodes to fail for duplicate table create attempt, and crash due to this failure.
PR contains also a fix, which identifies the situation when CTAS has been replicated, and makes further scan in async replication stream to see if there are following row events. The slave node will replicate either single TOI in case the CTAS table is empty, or if CTAS table contains rows, then single bundled write set with create table and row events is replicated to galera cluster.
This fix should keep master server's GTID's for CTAS replication in sync with GTID's in galera cluster.
cmake -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Debug
Maintainer mode makes all warnings errors. This patch fix warnings. Mostly about
deprecated `register` keyword.
Too much warnings came from Mroonga and I gave up on it.
These test can sporadically show mutex deadlock warnings between LOCK_wsrep_thd
and LOCK_thd_data mutexes. This means that these mutexes can be locked in opposite
order by different threads, and thus result in deadlock situation.
To fix such issue, the locking policy of these mutexes should be revised and
enforced to be uniform. However, a quick code review shows that the number of
lock/unlock operations for these mutexes combined is between 100-200, and all these
mutex invocations should be checked/fixed.
On the other hand, it turns out that LOCK_wsrep_thd is used for protecting access to
wsrep variables of THD (wsrep_conflict_state, wsrep_query_state), whereas LOCK_thd_data
protects query, db and mysys_var variables in THD. Extending LOCK_thd_data to protect
also wsrep variables looks like a viable solution, as there should not be a use case
where separate threads need simultaneous access to wsrep variables and THD data variables.
In this commit LOCK_wsrep_thd mutex is refactored to be replaced by LOCK_thd_data.
By bluntly replacing LOCK_wsrep_thd by LOCK_thd_data, will result in double locking
of LOCK_thd_data, and some adjustements have been performed to fix such situations.
Problem & Analysis: Slave's Receiver thread, Applier thread and worker
threads are created with LOCAL-INFILE option enabled. As the document
says https://dev.mysql.com/doc/refman/5.7/en/load-data-local.html,
there are some issues if a thread enables local infile.
This flag should be enabled with care. But for the above mentioned
internal threads, server is enabling it at the time of creation.
Fix: Further analysis on the code shows that none of threads really
need this flag to be enabled at any time as Slave never executes
"LOAD DATA LOCAL INFILE" after reading it from Relay log.
Applier thread removes "LOCAL" before start executing the query.
Problem was that in a circular replication setup the master remembers
position to events it has generated itself when reading from a slave.
If there are no new events in the queue from the slave, a
Gtid_list_log_event is generated to remember the last skipped event.
The problem happens if there is a network delay and we generate a
Gtid_list_log_event in the middle of the transaction, in which case there
will be an implicit comment and a new transaction with serverid=0 will be
logged.
The fix was to not generate any Gtid_list_log_events in the middle of a
transaction.
Do not silence uncertain cases, or fix any bugs.
The only functional change should be that ha_federated::extra()
is not calling DBUG_PRINT to report an unhandled case for
HA_EXTRA_PREPARE_FOR_DROP.
Do not silence uncertain cases, or fix any bugs.
The only functional change should be that ha_federated::extra()
is not calling DBUG_PRINT to report an unhandled case for
HA_EXTRA_PREPARE_FOR_DROP.
When master_use_gtid=no, the IO thread loads the slave GTID state from
the master during connect. This races with the SQL thread when
gtid_ignore_duplicates=1. If an event is in the relay log from before
the new connect and has not been applied yet, moving the slave
position causes the SQL thread to think that event should be skipped
due to gtid_ignore_duplicates=1.
This patch simply disables gtid_ignore_duplicates when not using GTID,
which seems to be what one would expect.
- Before this patch during startup all slave threads was started without
any check that they had started properly.
- If one did a START SLAVE, STOP SLAVE or CHANGE MASTER as first command to the server
there was a chance that server could access structures that where not
properly initialized which could lead to crashes in
Log_event::read_log_event
- Fixed by waiting for slave threads to start up properly also during
server startup, like we do with START SLAVE.
Protection added to reopen_file() and new_file_impl().
Without this we could get an assert in fn_format() as name == 0,
because the file was closed and name reset, atthe same time
new_file_impl() was called.
is starting.
This is needed as if we kill the START SLAVE thread too early during
shutdown then the IO_THREAD or SQL_THREAD will not have time to properly
initlize it's replication or THD structures and clean_up() will try to
delete master_info structures that are still in use.
The reason for this is that stop slave takes LOCK_active_mi over the
whole operation while some slave operations will also need LOCK_active_mi
which causes deadlocks.
Fixed by introducing object counting for Master_info and not taking
LOCK_active_mi over stop slave or even stop_all_slaves()
Another benefit of this approach is that it allows:
- Multiple threads can run SHOW SLAVE STATUS at the same time
- START/STOP/RESET/SLAVE STATUS on a slave will not block other slaves
- Simpler interface for handling get_master_info()
- Added some missing unlock of 'log_lock' in error condtions
- Moved rpl_parallel_inactivate_pool(&global_rpl_thread_pool) to end
of stop_slave() to not have to use LOCK_active_mi inside
terminate_slave_threads()
- Changed argument for remove_master_info() to Master_info, as we always
have this available
- Fixed core dump when doing FLUSH TABLES WITH READ LOCK and parallel
replication. Problem was that waiting for pause_for_ftwrl was not done
when deleting rpt->current_owner after a force_abort.
Description:
============
If you have a relay log index file that has ended up with
some relay log files that do not exists, then RESET SLAVE
ALL is not enough to get back to a clean state.
Analysis:
=========
In the bug scenario slave server is in stopped state and
some of the relay logs got deleted but the relay log index
file is not updated.
During slave server restart replication initialization fails
as some of the required relay logs are missing. User
executes RESET SLAVE/RESET SLAVE ALL command to start a
clean slave. As per the documentation RESET SLAVE command
clears the master info and relay log info repositories,
deletes all the relay log files, and starts a new relay log
file. But in a scenario where the slave server's
Relay_log_info object is not initialized slave will not
purge the existing relay logs. Hence the index file still
remains in a bad state. Users will not be able to start
the slave unless these files are cleared.
Fix:
===
RESET SLAVE/RESET SLAVE ALL commands should do the cleanup
even in a scenario where Relay_log_info object
initialization failed.
Backported a flag named 'error_on_rli_init_info' which is
required to identify slave's Relay_log_info object
initialization failure. This flag exists in MySQL-5.6
onwards as part of BUG#14021292 fix.
During RESET SLAVE/RESET SLAVE ALL execution this flag
indicates the Relay_log_info initialization failure.
In such a case open the relay log index/relay log files
and do the required clean up.