Removing DBUG_DUMP printouts for valgrind builds since they trigger warnings.
Removing valgrind memory checks completely.
Removing bzero() of record when opening table that was added earlier.
Fix to correct behaviour of find_and_fetch_row() for tables that have primary keys stored
in storage engines that support the fast method to fetch rows given a primary key. The
method uses position() to retrieve the key for a given record and rnd_pos() to position
the internal "cursor" at the row. Rnd_pos() returns the found record in table->record[0],
so the record has to be moved to table->record[1] for further processing after calling
find_and_fetch_row().
Problem: when embedding a character string with introducer with charset X
into a SQL query which is generally in character set Y, the string constants
were escaped according to their own character set (i.e.X), then after reading
such a "mixed" query from binlog, the string constants were unescaped
using character set of the query (i.e. Y), instead of X, which gave wrong
results or even syntax errors with tricky charsets (e.g. sjis)
Fix: when embedding a string constant of charset X into a query of charset Y,
the string constant is now escaped according to character Y, instead of
its own character set X.
Bug#23831 deadlock not noticed
RBR bug in that when replicated msta (multi-statement-trans-action) deadlocks
with a local at write row event or gets timed-out, the event handler did not return
the correct error code.
Wrong error code stops slave sql thread instead of to proceed with
rollback and replay.
The correct code is typed in error log and stored for error handling rotine
to conduct rollback and replay of the transaction. The handling for the rbr
remains the same as for the sbr events.
Particularly, timed-out transaction still is rolled back - look at the related bugs.
Removing code to step the group log position and just stepping
the event log position. If the group log position were stepped
one time too many, it might be that the group starts at a position
that is not possible, e.g., at a Rows_log_event, or between an
Intvar_log_event and the following associated Query_log_event.
crash for, e.g., NDB):
Before, mysqlbinlog printed table map events as a separate statement, so
when executing the event, the opened table was subsequently closed
when the statement ended. Instead, the row-based events that make up
a statement are now printed as *one* BINLOG statement, which means
that the table maps and the following *_rows_log_event events are
executed fully before the statement ends.
Changing implementation of BINLOG statement to be able to read the
emitted format, which now consists of several chunks of BASE64-encoded
data.
Non-upper-level INSERTs (the ones in the body of stored procedure,
stored function, or trigger) into a table that have AUTO_INCREMENT
column didn't affected the result of LAST_INSERT_ID() on this level.
The problem was introduced with the fix of bug 6880, which in turn was
introduced with the fix of bug 3117, where current insert_id value was
remembered on the first call to LAST_INSERT_ID() (bug 3117) and was
returned from that function until it was reset before the next
_upper-level_ statement (bug 6880).
The fix for bug#21726 brings back the behaviour of version 4.0, and
implements the following: remember insert_id value at the beginning
of the statement or expression (which at that point equals to
the first insert_id value generated by the previous statement), and
return that remembered value from LAST_INSERT_ID() or @@LAST_INSERT_ID.
Thus, the value returned by LAST_INSERT_ID() is not affected by values
generated by current statement, nor by LAST_INSERT_ID(expr) calls in
this statement.
Version 5.1 does not have this bug (it was fixed by WL 3146).
We now reset the THD members related to auto_increment+binlog in
MYSQL_LOG::write(). This is better than in THD::cleanup_after_query(),
which was not able to distinguish between SELECT myfunc1(),myfunc2()
and INSERT INTO t SELECT myfunc1(),myfunc2() from a binlogging point
of view.
Rows_log_event::exec_event() now calls lex_start() instead of
mysql_init_query() because the latter now does too much (it resets
the binlog format).
this is a cleanup patch for our current auto_increment handling:
new names for auto_increment variables in THD, new methods to manipulate them
(see sql_class.h), some move into handler::, causing less backup/restore
work when executing substatements.
This makes the logic hopefully clearer, less work is is needed in
mysql_insert().
By cleaning up, using different variables for different purposes (instead
of one for 3 things...), we fix those bugs, which someone may want to fix
in 5.0 too:
BUG#20339 "stored procedure using LAST_INSERT_ID() does not replicate
statement-based"
BUG#20341 "stored function inserting into one auto_increment puts bad
data in slave"
BUG#19243 "wrong LAST_INSERT_ID() after ON DUPLICATE KEY UPDATE"
(now if a row is updated, LAST_INSERT_ID() will return its id)
and re-fixes:
BUG#6880 "LAST_INSERT_ID() value changes during multi-row INSERT"
(already fixed differently by Ramil in 4.1)
Test of documented behaviour of mysql_insert_id() (there was no test).
The behaviour changes introduced are:
- LAST_INSERT_ID() now returns "the first autogenerated auto_increment value
successfully inserted", instead of "the first autogenerated auto_increment
value if any row was successfully inserted", see auto_increment.test.
Same for mysql_insert_id(), see mysql_client_test.c.
- LAST_INSERT_ID() returns the id of the updated row if ON DUPLICATE KEY
UPDATE, see auto_increment.test. Same for mysql_insert_id(), see
mysql_client_test.c.
- LAST_INSERT_ID() does not change if no autogenerated value was successfully
inserted (it used to then be 0), see auto_increment.test.
- if in INSERT SELECT no autogenerated value was successfully inserted,
mysql_insert_id() now returns the id of the last inserted row (it already
did this for INSERT VALUES), see mysql_client_test.c.
- if INSERT SELECT uses LAST_INSERT_ID(X), mysql_insert_id() now returns X
(it already did this for INSERT VALUES), see mysql_client_test.c.
- NDB now behaves like other engines wrt SET INSERT_ID: with INSERT IGNORE,
the id passed in SET INSERT_ID is re-used until a row succeeds; SET INSERT_ID
influences not only the first row now.
Additionally, when unlocking a table we check that the thread is not keeping
a next_insert_id (as the table is unlocked that id is potentially out-of-date);
forgetting about this next_insert_id is done in a new
handler::ha_release_auto_increment().
Finally we prepare for engines capable of reserving finite-length intervals
of auto_increment values: we store such intervals in THD. The next step
(to be done by the replication team in 5.1) is to read those intervals from
THD and actually store them in the statement-based binary log. NDB
will be a good engine to test that.