The bug caused memory corruption for some queries with top OR level
in the WHERE condition if they contained equality predicates and
other sargable predicates in disjunctive parts of the condition.
The corruption happened because the upper bound of the memory
allocated for KEY_FIELD and SARGABLE_PARAM internal structures
containing info about potential lookup keys was calculated incorrectly
in some cases. In particular it was calculated incorrectly when the
WHERE condition was an OR formula with disjuncts being AND formulas
including equalities and other sargable predicates.
(Regression, caused by a patch for the bug 22646).
Problem: when result type of date_format() was changed from
binary string to character string, mixing date_format()
with a ascii column in CONCAT() stopped to work.
Fix:
- adding "repertoire" flag into DTCollation class,
to mark items which can return only pure ASCII strings.
- allow character set conversion from pure ASCII to other character sets.
causes full table lock on innodb table.
Also fixes Bug#28502 Triggers that update another innodb table
will block on X lock unnecessarily (duplciate).
Code review fixes.
Both bugs' synopses are misleading: InnoDB table is
not X locked. The statements, however, cannot proceed concurrently,
but this happens due to lock conflicts for tables used in triggers,
not for the InnoDB table.
If a user had an InnoDB table, and two triggers, AFTER UPDATE and
AFTER INSERT, competing for different resources (e.g. two distinct
MyISAM tables), then these two triggers would not be able to execute
concurrently. Moreover, INSERTS/UPDATES of the InnoDB table would
not be able to run concurrently.
The problem had other side-effects (see respective bug reports).
This behavior was a consequence of a shortcoming of the pre-locking
algorithm, which would not distinguish between different DML operations
(e.g. INSERT and DELETE) and pre-lock all the tables
that are used by any trigger defined on the subject table.
The idea of the fix is to extend the pre-locking algorithm to keep track,
for each table, what DML operation it is used for and not
load triggers that are known to never be fired.
The need arose when working on Bug 26141, where it became
necessary to replace TABLE_LIST with its forward declaration in a few
headers, and this involved a lot of s/TABLE_LIST/st_table_list/.
Although other workarounds exist, this patch is in line
with our general strategy of moving away from typedef-ed names.
Sometime in future we might also rename TABLE_LIST to follow the
coding style, but this is a huge change.
fails if a database is not selected prior.
The problem manifested itself when a user tried to
create a routine that had non-fully-qualified identifiers in its bodies
and there was no current database selected.
This is a regression introduced by the fix for Bug 19022:
The patch for Bug 19022 changes the code to always produce a warning
if we can't resolve the current database in the parser.
In this case this was not necessary, since even though the produced
parsed tree was incorrect, we never re-use sphead
that was obtained at first parsing of CREATE PROCEDURE.
The sphead that is anyhow used is always obtained through db_load_routine,
and there we change the current database to sphead->m_db before
calling yyparse.
The idea of the fix is to resolve the current database directly using
lex->sphead->m_db member when parsing a stored routine body, when
such is present.
This patch removes the need to reset the current database
when loading a trigger or routine definition into SP cache.
The redundant code will be removed in 5.1.
- BUG#11986: Stored routines and triggers can fail if the code
has a non-ascii symbol
- BUG#16291: mysqldump corrupts string-constants with non-ascii-chars
- BUG#19443: INFORMATION_SCHEMA does not support charsets properly
- BUG#21249: Character set of SP-var can be ignored
- BUG#25212: Character set of string constant is ignored (stored routines)
- BUG#25221: Character set of string constant is ignored (triggers)
There were a few general problems that caused these bugs:
1. Character set information of the original (definition) query for views,
triggers, stored routines and events was lost.
2. mysqldump output query in client character set, which can be
inappropriate to encode definition-query.
3. INFORMATION_SCHEMA used strings with mixed encodings to display object
definition;
1. No query-definition-character set.
In order to compile query into execution code, some extra data (such as
environment variables or the database character set) is used. The problem
here was that this context was not preserved. So, on the next load it can
differ from the original one, thus the result will be different.
The context contains the following data:
- client character set;
- connection collation (character set and collation);
- collation of the owner database;
The fix is to store this context and use it each time we parse (compile)
and execute the object (stored routine, trigger, ...).
2. Wrong mysqldump-output.
The original query can contain several encodings (by means of character set
introducers). The problem here was that we tried to convert original query
to the mysqldump-client character set.
Moreover, we stored queries in different character sets for different
objects (views, for one, used UTF8, triggers used original character set).
The solution is
- to store definition queries in the original character set;
- to change SHOW CREATE statement to output definition query in the
binary character set (i.e. without any conversion);
- introduce SHOW CREATE TRIGGER statement;
- to dump special statements to switch the context to the original one
before dumping and restore it afterwards.
Note, in order to preserve the database collation at the creation time,
additional ALTER DATABASE might be used (to temporary switch the database
collation back to the original value). In this case, ALTER DATABASE
privilege will be required. This is a backward-incompatible change.
3. INFORMATION_SCHEMA showed non-UTF8 strings
The fix is to generate UTF8-query during the parsing, store it in the object
and show it in the INFORMATION_SCHEMA.
Basically, the idea is to create a copy of the original query convert it to
UTF8. Character set introducers are removed and all text literals are
converted to UTF8.
This UTF8 query is intended to provide user-readable output. It must not be
used to recreate the object. Specialized SHOW CREATE statements should be
used for this.
The reason for this limitation is the following: the original query can
contain symbols from several character sets (by means of character set
introducers).
Example:
- original query:
CREATE VIEW v1 AS SELECT _cp1251 'Hello' AS c1;
- UTF8 query (for INFORMATION_SCHEMA):
CREATE VIEW v1 AS SELECT 'Hello' AS c1;
Bug 28127 (Some valid identifiers names are not parsed correctly)
Bug 26302 (MySQL server cuts off trailing "*/" from comments in SP/func)
This patch is the second part of a major cleanup, required to fix
Bug 25411 (trigger code truncated).
The root cause of the issue stems from the function skip_rear_comments,
which was a work around to remove "extra" "*/" characters from the query
text, when parsing a query and reusing the text fragments to represent a
view, trigger, function or stored procedure.
The reason for this work around is that "special comments",
like /*!50002 XXX */, were not parsed properly, so that a query like:
AAA /*!50002 BBB */ CCC
would be seen by the parser as "AAA BBB */ CCC" when the current version
is greater or equal to 5.0.2
The root cause of this stems from how special comments are parsed.
Special comments are really out-of-bound text that appear inside a query,
that affects how the parser behave.
In nature, /*!50002 XXX */ in MySQL is similar to the C concept
of preprocessing :
#if VERSION >= 50002
XXX
#endif
Depending on the current VERSION of the server, either the special comment
should be expanded or it should be ignored, but in all cases the "text" of
the query should be re-written to strip the "/*!50002" and "*/" markers,
which does not belong to the SQL language itself.
Prior to this fix, these markers would leak into :
- the storage format for VIEW,
- the storage format for FUNCTION,
- the storage format for FUNCTION parameters, in mysql.proc (param_list),
- the storage format for PROCEDURE,
- the storage format for PROCEDURE parameters, in mysql.proc (param_list),
- the storage format for TRIGGER,
- the binary log used for replication.
In all cases, not only this cause format corruption, but also provide a vector
for dormant security issues, by allowing to tunnel code that will be activated
after an upgrade.
The proper solution is to deal with special comments strictly during parsing,
when accepting a query from the outside world.
Once a query is parsed and an object is created with a persistant
representation, this object should not arbitrarily mutate after an upgrade.
In short, special comments are a useful but limited feature for MYSQLdump,
when used at an *interface* level to facilitate import/export,
but bloating the server *internal* storage format is *not* the proper way
to deal with configuration management of the user logic.
With this fix:
- the Lex_input_stream class now acts as a comment pre-processor,
and either expands or ignore special comments on the fly.
- MYSQLlex and sql_yacc.yy have been cleaned up to strictly use the
public interface of Lex_input_stream. In particular, how the input stream
accepts or rejects a character is private to Lex_input_stream, and the
internal buffer pointers of that class are strictly private, and should not
be tempered with during parsing.
This caused many changes mostly in sql_lex.cc.
During the code cleanup in case MY_LEX_NUMBER_IDENT,
Bug 28127 (Some valid identifiers names are not parsed correctly)
was found and fixed.
By parsing special comments properly, and removing the function
'skip_rear_comments' [sic],
Bug 26302 (MySQL server cuts off trailing "*/" from comments in SP/func)
has been fixed as well.
Coding style: classes start with a capital letter.
Rename some classes related to parsing:
create_field -> Create_field
foreign_key -> Foreign_key
key_part_spec -> Key_part_spec
Bug#4968 ""Stored procedure crash if cursor opened on altered table"
Bug#6895 "Prepared Statements: ALTER TABLE DROP COLUMN does nothing"
Bug#19182 "CREATE TABLE bar (m INT) SELECT n FROM foo; doesn't work from
stored procedure."
Bug#19733 "Repeated alter, or repeated create/drop, fails"
Bug#22060 "ALTER TABLE x AUTO_INCREMENT=y in SP crashes server"
Bug#24879 "Prepared Statements: CREATE TABLE (UTF8 KEY) produces a
growing key length" (this bug is not fixed in 5.0)
Re-execution of CREATE DATABASE, CREATE TABLE and ALTER TABLE
statements in stored routines or as prepared statements caused
incorrect results (and crashes in versions prior to 5.0.25).
In 5.1 the problem occured only for CREATE DATABASE, CREATE TABLE
SELECT and CREATE TABLE with INDEX/DATA DIRECTOY options).
The problem of bugs 4968, 19733, 19282 and 6895 was that functions
mysql_prepare_table, mysql_create_table and mysql_alter_table are not
re-execution friendly: during their operation they modify contents
of LEX (members create_info, alter_info, key_list, create_list),
thus making the LEX unusable for the next execution.
In particular, these functions removed processed columns and keys from
create_list, key_list and drop_list. Search the code in sql_table.cc
for drop_it.remove() and similar patterns to find evidence.
The fix is to supply to these functions a usable copy of each of the
above structures at every re-execution of an SQL statement.
To simplify memory management, LEX::key_list and LEX::create_list
were added to LEX::alter_info, a fresh copy of which is created for
every execution.
The problem of crashing bug 22060 stemmed from the fact that the above
metnioned functions were not only modifying HA_CREATE_INFO structure
in LEX, but also were changing it to point to areas in volatile memory
of the execution memory root.
The patch solves this problem by creating and using an on-stack
copy of HA_CREATE_INFO in mysql_execute_command.
Additionally, this patch splits the part of mysql_alter_table
that analizes and rewrites information from the parser into
a separate function - mysql_prepare_alter_table, in analogy with
mysql_prepare_table, which is renamed to mysql_prepare_create_table.
The root cause of this bug is related to the function skip_rear_comments,
in sql_lex.cc
Recent code changes in skip_rear_comments changed the prototype from
"const uchar*" to "const char*", which had an unforseen impact on this test:
(endp[-1] < ' ')
With unsigned characters, this code filters bytes of value [0x00 - 0x20]
With *signed* characters, this also filters bytes of value [0x80 - 0xFF].
This caused the regression reported, considering cyrillic characters in the
parameter name to be whitespace, and truncated.
Note that the regression is present both in 5.0 and 5.1.
With this fix:
- [0x80 - 0xFF] bytes are no longer considered whitespace.
This alone fixes the regression.
In addition, filtering [0x00 - 0x20] was found bogus and abusive,
so that the code now filters uses my_isspace when looking for whitespace.
Note that this fix is only addressing the regression affecting UTF-8
in general, but does not address a more fundamental problem with
skip_rear_comments: parsing a string *backwards*, starting at end[-1],
is not safe with multi-bytes characters, so that end[-1] can confuse the
last byte of a multi-byte characters with a characters to filter out.
The only known impact of this remaining issue affects objects that have to
meet all the conditions below:
- the object is a FUNCTION / PROCEDURE / TRIGGER / EVENT / VIEW
- the body consist of only *1* instruction, and does *not* contain a
BEGIN-END block
- the instruction ends, lexically, with <ident> <whitespace>* ';'?
For example, "select <ident>;" or "return <ident>;"
- The last character of <ident> is a multi-byte character
- the last byte of this character is ';' '*', '/' or whitespace
In this case, the body of the object will be truncated after parsing,
and stored in an invalid format.
This last issue has not been fixed in this patch, since the real fix
will be implemented by Bug 25411 (trigger code truncated), which is caused
by the very same code.
The real problem is that the function skip_rear_comments is only a
work-around, and should be removed entirely: see the proposed patch for
bug 25411 for details.
Bug #23667 "CREATE TABLE LIKE is not isolated from alteration
by other connections"
Bug #18950 "CREATE TABLE LIKE does not obtain LOCK_open"
As well as:
Bug #25578 "CREATE TABLE LIKE does not require any privileges
on source table".
The first and the second bugs resulted in various errors and wrong
binary log order when one tried to execute concurrently CREATE TABLE LIKE
statement and DDL statements on source table or DML/DDL statements on its
target table.
The problem was caused by incomplete protection/table-locking against
concurrent statements implemented in mysql_create_like_table() routine.
We solve it by simply implementing such protection in proper way.
Most of actual work for 5.1 was already done by fix for bug 20662 and
preliminary patch changing locking in ALTER TABLE.
The third bug allowed user who didn't have any privileges on table create
its copy and therefore circumvent privilege check for SHOW CREATE TABLE.
This patch solves this problem by adding privilege check, which was missing.
Finally it also removes some duplicated code from mysql_create_like_table()
and thus fixes bug #26869 "TABLE_LIST::table_name_length inconsistent with
TABLE_LIST::table_name".
Bug#21483 "Server abort or deadlock on INSERT DELAYED with another
implicit insert"
Also fixes and adds test cases for bugs:
20497 "Trigger with INSERT DELAYED causes Error 1165"
21714 "Wrong NEW.value and server abort on INSERT DELAYED to a
table with a trigger".
Post-review fixes.
Problem:
In MySQL INSERT DELAYED is a way to pipe all inserts into a
given table through a dedicated thread. This is necessary for
simplistic storage engines like MyISAM, which do not have internal
concurrency control or threading and thus can not
achieve efficient INSERT throughput without support from SQL layer.
DELAYED INSERT works as follows:
For every distinct table, which can accept DELAYED inserts and has
pending data to insert, a dedicated thread is created to write data
to disk. All user connection threads that attempt to
delayed-insert into this table interact with the dedicated thread in
producer/consumer fashion: all records to-be inserted are pushed
into a queue of the dedicated thread, which fetches the records and
writes them.
In this design, client connection threads never open or lock
the delayed insert table.
This functionality was introduced in version 3.23 and does not take
into account existence of triggers, views, or pre-locking.
E.g. if INSERT DELAYED is called from a stored function, which,
in turn, is called from another stored function that uses the delayed
table, a deadlock can occur, because delayed locking by-passes
pre-locking. Besides:
* the delayed thread works directly with the subject table through
the storage engine API and does not invoke triggers
* even if it was patched to invoke triggers, if triggers,
in turn, used other tables, the delayed thread would
have to open and lock involved tables (use pre-locking).
* even if it was patched to use pre-locking, without deadlock
detection the delayed thread could easily lock out user
connection threads in case when the same table is used both
in a trigger and on the right side of the insert query:
the delayed thread would not release locks until all inserts
are complete, and user connection can not complete inserts
without having locks on the tables used on the right side of the
query.
Solution:
These considerations suggest two general alternatives for the
future of INSERT DELAYED:
* it is considered a full-fledged alternative to normal INSERT
* it is regarded as an optimisation that is only relevant
for simplistic engines.
Since we missed our chance to provide complete support of new
features when 5.0 was in development, the first alternative
currently renders infeasible.
However, even the second alternative, which is to detect
new features and convert DELAYED insert into a normal insert,
is not easy to implement.
The catch-22 is that we don't know if the subject table has triggers
or is a view before we open it, and we only open it in the
delayed thread. We don't know if the query involves pre-locking
until we have opened all tables, and we always first create
the delayed thread, and only then open the remaining tables.
This patch detects the problematic scenarios and converts
DELAYED INSERT to a normal INSERT using the following approach:
* if the statement is executed under pre-locking (e.g. from
within a stored function or trigger) or the right
side may require pre-locking, we detect the situation
before creating a delayed insert thread and convert the statement
to a conventional INSERT.
* if the subject table is a view or has triggers, we shutdown
the delayed thread and convert the statement to a conventional
INSERT.
Replacing binlog_row_based_if_mixed with variable binlog_stmt_flags
holding several flags and adding member functions to manipulate the
flags.
Added code to generate a warning when an attempt to log an unsafe
statement to the binary log was made. The warning is both pushed to the
SHOW WARNINGS table and written to the error log. The prevent flooding
the error log, the warning is just written to the error log once per
open session.
The following type conversions was done:
- Changed byte to uchar
- Changed gptr to uchar*
- Change my_string to char *
- Change my_size_t to size_t
- Change size_s to size_t
Removed declaration of byte, gptr, my_string, my_size_t and size_s.
Following function parameter changes was done:
- All string functions in mysys/strings was changed to use size_t
instead of uint for string lengths.
- All read()/write() functions changed to use size_t (including vio).
- All protocoll functions changed to use size_t instead of uint
- Functions that used a pointer to a string length was changed to use size_t*
- Changed malloc(), free() and related functions from using gptr to use void *
as this requires fewer casts in the code and is more in line with how the
standard functions work.
- Added extra length argument to dirname_part() to return the length of the
created string.
- Changed (at least) following functions to take uchar* as argument:
- db_dump()
- my_net_write()
- net_write_command()
- net_store_data()
- DBUG_DUMP()
- decimal2bin() & bin2decimal()
- Changed my_compress() and my_uncompress() to use size_t. Changed one
argument to my_uncompress() from a pointer to a value as we only return
one value (makes function easier to use).
- Changed type of 'pack_data' argument to packfrm() to avoid casts.
- Changed in readfrm() and writefrom(), ha_discover and handler::discover()
the type for argument 'frmdata' to uchar** to avoid casts.
- Changed most Field functions to use uchar* instead of char* (reduced a lot of
casts).
- Changed field->val_xxx(xxx, new_ptr) to take const pointers.
Other changes:
- Removed a lot of not needed casts
- Added a few new cast required by other changes
- Added some cast to my_multi_malloc() arguments for safety (as string lengths
needs to be uint, not size_t).
- Fixed all calls to hash-get-key functions to use size_t*. (Needed to be done
explicitely as this conflict was often hided by casting the function to
hash_get_key).
- Changed some buffers to memory regions to uchar* to avoid casts.
- Changed some string lengths from uint to size_t.
- Changed field->ptr to be uchar* instead of char*. This allowed us to
get rid of a lot of casts.
- Some changes from true -> TRUE, false -> FALSE, unsigned char -> uchar
- Include zlib.h in some files as we needed declaration of crc32()
- Changed MY_FILE_ERROR to be (size_t) -1.
- Changed many variables to hold the result of my_read() / my_write() to be
size_t. This was needed to properly detect errors (which are
returned as (size_t) -1).
- Removed some very old VMS code
- Changed packfrm()/unpackfrm() to not be depending on uint size
(portability fix)
- Removed windows specific code to restore cursor position as this
causes slowdown on windows and we should not mix read() and pread()
calls anyway as this is not thread safe. Updated function comment to
reflect this. Changed function that depended on original behavior of
my_pwrite() to itself restore the cursor position (one such case).
- Added some missing checking of return value of malloc().
- Changed definition of MOD_PAD_CHAR_TO_FULL_LENGTH to avoid 'long' overflow.
- Changed type of table_def::m_size from my_size_t to ulong to reflect that
m_size is the number of elements in the array, not a string/memory
length.
- Moved THD::max_row_length() to table.cc (as it's not depending on THD).
Inlined max_row_length_blob() into this function.
- More function comments
- Fixed some compiler warnings when compiled without partitions.
- Removed setting of LEX_STRING() arguments in declaration (portability fix).
- Some trivial indentation/variable name changes.
- Some trivial code simplifications:
- Replaced some calls to alloc_root + memcpy to use
strmake_root()/strdup_root().
- Changed some calls from memdup() to strmake() (Safety fix)
- Simpler loops in client-simple.c
The issue found with bug 25411 is due to the function skip_rear_comments()
which damages the source code while implementing a work around.
The root cause of the problem is in the lexical analyser, which does not
process special comments properly.
For special comments like :
[1] aaa /*!50000 bbb */ ccc
since 5.0 is a version older that the current code, the parser is in lining
the content of the special comment, so that the query to process is
[2] aaa bbb ccc
However, the text of the query captured when processing a stored procedure,
stored function or trigger (or event in 5.1), can be after rebuilding it:
[3] aaa bbb */ ccc
which is wrong.
To fix bug 25411 properly, the lexical analyser needs to return [2] when
in lining special comments.
In order to implement this, some preliminary cleanup is required in the code,
which is implemented by this patch.
Before this change, the structure named LEX (or st_lex) contains attributes
that belong to lexical analysis, as well as attributes that represents the
abstract syntax tree (AST) of a statement.
Creating a new LEX structure for each statements (which makes sense for the
AST part) also re-initialized the lexical analysis phase each time, which
is conceptually wrong.
With this patch, the previous st_lex structure has been split in two:
- st_lex represents the Abstract Syntax Tree for a statement. The name "lex"
has not been changed to avoid a bigger impact in the code base.
- class lex_input_stream represents the internal state of the lexical
analyser, which by definition should *not* be reinitialized when parsing
multiple statements from the same input stream.
This change is a pre-requisite for bug 25411, since the implementation of
lex_input_stream will later improve to deal properly with special comments,
and this processing can not be done with the current implementation of
sp_head::reset_lex and sp_head::restore_lex, which interfere with the lexer.
This change set alone does not fix bug 25411.
When merging views into the enclosing statement
the ORDER BY clause of the view is merged to the
parent's ORDER BY clause.
However when the VIEW is merged into an UNION
branch the ORDER BY should be ignored.
Use of ORDER BY for individual SELECT statements
implies nothing about the order in which the rows
appear in the final result because UNION by default
produces unordered set of rows.
Fixed by ignoring the ORDER BY clause from the merge
view when expanded in an UNION branch.
- Add MASTER_SSL_VERIFY_SERVER_CERT option to CHANGE MASTER TO
- Add Master_Ssl_Serify_Server_Cert to SHOW SLAVE STATUS
- Save and restore ssl_verify_server_cert to master info file
setting it to disabled as default.
the lexer API which internally uses unsigned char variables to
address its state map. The implementation of the lexer should be
internal to the lexer, and not influence the rest of the code.
The problem was that some facilities (like CONVERT_TZ() function or
server HELP statement) may require implicit access to some tables in
'mysql' database. This access was done by ordinary means of adding
such tables to the list of tables the query is going to open.
However, if we issued LOCK TABLES before that, we would get "table
was not locked" error trying to open such implicit tables.
The solution is to treat certain tables as MySQL system tables, like
we already do for mysql.proc. Such tables may be opened for reading
at any moment regardless of any locks in effect. The cost of this is
that system table may be locked for writing only together with other
system tables, it is disallowed to lock system tables for writing and
have any other lock on any other table.
After this patch the following tables are treated as MySQL system
tables:
mysql.help_category
mysql.help_keyword
mysql.help_relation
mysql.help_topic
mysql.proc (it already was)
mysql.time_zone
mysql.time_zone_leap_second
mysql.time_zone_name
mysql.time_zone_transition
mysql.time_zone_transition_type
These tables are now opened with open_system_tables_for_read() and
closed with close_system_tables(), or one table may be opened with
open_system_table_for_update() and closed with close_thread_tables()
(the latter is used for mysql.proc table, which is updated as part of
normal MySQL server operation). These functions may be used when
some tables were opened and locked already.
NOTE: online update of time zone tables is not possible during
replication, because there's no time zone cache flush neither on LOCK
TABLES, nor on FLUSH TABLES, so the master may serve stale time zone
data from cache, while on slave updated data will be loaded from the
time zone tables.
away.
During optimization stage the WHERE conditions can be changed or even
be removed at all if they know for sure to be true of false. Thus they aren't
showed in the EXPLAIN EXTENDED which prints conditions after optimization.
Now if all elements of an Item_cond were removed this Item_cond is substituted
for an Item_int with the int value of the Item_cond.
If there were conditions that were totally optimized away then values of the
saved cond_value and having_value will be printed instead.
fixes).
The legend: on a replication slave, in case a trigger creation
was filtered out because of application of replicate-do-table/
replicate-ignore-table rule, the parsed definition of a trigger was not
cleaned up properly. LEX::sphead member was left around and leaked
memory. Until the actual implementation of support of
replicate-ignore-table rules for triggers by the patch for Bug 24478 it
was never the case that "case SQLCOM_CREATE_TRIGGER"
was not executed once a trigger was parsed,
so the deletion of lex->sphead there worked and the memory did not leak.
The fix:
The real cause of the bug is that there is no 1 or 2 places where
we can clean up the main LEX after parse. And the reason we
can not have just one or two places where we clean up the LEX is
asymmetric behaviour of MYSQLparse in case of success or error.
One of the root causes of this behaviour is the code in Item::Item()
constructor. There, a newly created item adds itself to THD::free_list
- a single-linked list of Items used in a statement. Yuck. This code
is unaware that we may have more than one statement active at a time,
and always assumes that the free_list of the current statement is
located in THD::free_list. One day we need to be able to explicitly
allocate an item in a given Query_arena.
Thus, when parsing a definition of a stored procedure, like
CREATE PROCEDURE p1() BEGIN SELECT a FROM t1; SELECT b FROM t1; END;
we actually need to reset THD::mem_root, THD::free_list and THD::lex
to parse the nested procedure statement (SELECT *).
The actual reset and restore is implemented in semantic actions
attached to sp_proc_stmt grammar rule.
The problem is that in case of a parsing error inside a nested statement
Bison generated parser would abort immediately, without executing the
restore part of the semantic action. This would leave THD in an
in-the-middle-of-parsing state.
This is why we couldn't have had a single place where we clean up the LEX
after MYSQLparse - in case of an error we needed to do a clean up
immediately, in case of success a clean up could have been delayed.
This left the door open for a memory leak.
One of the following possibilities were considered when working on a fix:
- patch the replication logic to do the clean up. Rejected
as breaks module borders, replication code should not need to know the
gory details of clean up procedure after CREATE TRIGGER.
- wrap MYSQLparse with a function that would do a clean up.
Rejected as ideally we should fix the problem when it happens, not
adjust for it outside of the problematic code.
- make sure MYSQLparse cleans up after itself by invoking the clean up
functionality in the appropriate places before return. Implemented in
this patch.
- use %destructor rule for sp_proc_stmt to restore THD - cleaner
than the prevoius approach, but rejected
because needs a careful analysis of the side effects, and this patch is
for 5.0, and long term we need to use the next alternative anyway
- make sure that sp_proc_stmt doesn't juggle with THD - this is a
large work that will affect many modules.
Cleanup: move main_lex and main_mem_root from Statement to its
only two descendants Prepared_statement and THD. This ensures that
when a Statement instance was created for purposes of statement backup,
we do not involve LEX constructor/destructor, which is fairly expensive.
In order to track that the transformation produces equivalent
functionality please check the respective constructors and destructors
of Statement, Prepared_statement and THD - these members were
used only there.
This cleanup is unrelated to the patch.
can be specified
Currently MySQL allows one to specify what indexes to ignore during
join optimization. The scope of the current USE/FORCE/IGNORE INDEX
statement is only the FROM clause, while all other clauses are not
affected.
However, in certain cases, the optimizer
may incorrectly choose an index for sorting and/or grouping, and
produce an inefficient query plan.
This task provides the means to specify what indexes are
ignored/used for what operation in a more fine-grained manner, thus
making it possible to manually force a better plan. We do this
by extending the current IGNORE/USE/FORCE INDEX syntax to:
IGNORE/USE/FORCE INDEX [FOR {JOIN | ORDER | GROUP BY}]
so that:
- if no FOR is specified, the index hint will apply everywhere.
- if MySQL is started with the compatibility option --old_mode then
an index hint without a FOR clause works as in 5.0 (i.e, the
index will only be ignored for JOINs, but can still be used to
compute ORDER BY).
See the WL#3527 for further details.
"Server Variables for Plugins"
Implement support for plugins to declare server variables.
Demonstrate functionality by removing InnoDB specific code from sql/*
New feature for HASH - HASH_UNIQUE flag
New feature for DYNAMIC_ARRAY - initializer accepts preallocated ptr.
Completed support for plugin reference counting.
Post fix for bug#23800.
The Item_field constructor now increases the select_n_where_fields counter.
sql_yacc.yy:
Post fix for bug#23800.
Take into account fields that might be added by subselects.
sql_lex.h:
Post fix for bug#23800.
Added the select_n_where_fields variable to the st_select_lex class.
sql_lex.cc:
Post fix for bug#23800.
Initialization of the select_n_where_fields variable.
to a single statement.
---
Bug#24795: SHOW PROFILE
Profiling is only partially functional on some architectures. Where
there is no getrusage() system call, presently Null values are
returned where it would be required. Notably, Windows needs some love
applied to make it as useful.
Syntax this adds:
SHOW PROFILES
SHOW PROFILE [types] [FOR QUERY n] [OFFSET n] [LIMIT n]
where "n" is an integer
and "types" is zero or many (comma-separated) of
"CPU"
"MEMORY" (not presently supported)
"BLOCK IO"
"CONTEXT SWITCHES"
"PAGE FAULTS"
"IPC"
"SWAPS"
"SOURCE"
"ALL"
It also adds a session variable (boolean) "profiling", set to "no"
by default, and (integer) profiling_history_size, set to 15 by
default.
This patch abstracts setting THDs' "proc_info" behind a macro that
can be used as a hook into the profiling code when profiling
support is compiled in. All future code in this line should use
that mechanism for setting thd->proc_info.
---
Tests are now set to omit the statistics.
---
Adds an Information_schema table, "profiling" for access to
"show profile" data.
---
Merge zippy.cornsilk.net:/home/cmiller/work/mysql/mysql-5.0-community-3--bug24795
into zippy.cornsilk.net:/home/cmiller/work/mysql/mysql-5.0-community
---
Fix merge problems.
---
Fixed one bug in the query_source being NULL.
Updated test results.
---
Include more thorough profiling tests.
Improve support for prepared statements.
Use session-specific query IDs, starting at zero.
---
Selecting from I_S.profiling is no longer quashed in profiling, as
requested by Giuseppe.
Limit the size of captured query text.
No longer log queries that are zero length.
created for sorting.
Any outer reference in a subquery was represented by an Item_field object.
If the outer select employs a temporary table all such fields should be
replaced with fields from that temporary table in order to point to the
actual data. This replacement wasn't done and that resulted in a wrong
subquery evaluation and a wrong result of the whole query.
Now any outer field is represented by two objects - Item_field placed in the
outer select and Item_outer_ref in the subquery. Item_field object is
processed as a normal field and the reference to it is saved in the
ref_pointer_array. Thus the Item_outer_ref is always references the correct
field. The original field is substituted for a reference in the
Item_field::fix_outer_field() function.
New function called fix_inner_refs() is added to fix fields referenced from
inner selects and to fix references (Item_ref objects) to these fields.
The new Item_outer_ref class is a descendant of the Item_direct_ref class.
It additionally stores a reference to the original field and designed to
behave more like a field.
fails
The bug was introduced with the push of the fix for bug#20953: after
the error on view creation we never reset the error state, so some
valid statements would give the same error after that.
The solution is to properly reset the error state.
Two problems here:
Problem 1:
While constructing the join columns list the optimizer does as follows:
1. Sets the join_using_fields/natural_join members of the right JOIN
operand.
2. Makes a "table reference" (TABLE_LIST) to parent the two tables.
3. Assigns the join_using_fields/is_natural_join of the wrapper table
using join_using_fields/natural_join of the rightmost table
4. Sets join_using_fields to NULL for the right JOIN operand.
5. Passes the parent table up to the same procedure on the upper
level.
Step 1 overrides the the join_using_fields that are set for a nested
join wrapping table in step 4.
Fixed by making a designated variable SELECT_LEX::prev_join_using to
pass the data from step 1 to step 4 without destroying the wrapping
table data.
Problem 2:
The optimizer checks for ambiguous columns while transforming
NATURAL JOIN/JOIN USING to JOIN ON. While doing that there was no
distinction between columns that are used in the generated join
condition (where ambiguity can be checked) and the other columns
(where ambiguity can be checked only when resolving references
coming from outside the JOIN construct itself).
Fixed by allowing the non-USING columns to be present in multiple
copies in both sides of the join and moving the ambiguity check
to the place where unqualified references to the join columns are
resolved (find_field_in_natural_join()).
- Make the code produce correct result: use an array of triggers to turn on/off equalities for each
compared column. Also turn on/off optimizations based on those equalities.
- Make EXPLAIN output show "Full scan on NULL key" for tables for which we switch between
ref/unique_subquery/index_subquery and ALL access.
- index_subquery engine now has HAVING clause when it is needed, and it is
displayed in EXPLAIN EXTENDED
- Fix incorrect presense of "Using index" for index/unique-based subqueries (BUG#22930)
// bk trigger note: this commit refers to BUG#24127
Currently in the ONLY_FULL_GROUP_BY mode no hidden fields are allowed in the
select list. To ensure this each expression in the select list is checked
to be a constant, an aggregate function or to occur in the GROUP BY list.
The last two requirements are wrong and doesn't allow valid expressions like
"MAX(b) - MIN(b)" or "a + 1" in a query with grouping by a.
The correct check implemented by the patch will ensure that:
any field reference in the [sub]expressions of the select list
is under an aggregate function or
is mentioned as member of the group list or
is an outer reference or
is part of the select list element that coincide with a grouping element.
The Item_field objects now can contain the position of the select list
expression which they belong to. The position is saved during the
field's Item_field::fix_fields() call.
The non_agg_fields list for non-aggregated fields is added to the SELECT_LEX
class. The SELECT_LEX::cur_pos_in_select_list now contains the position in the
select list of the expression being currently fixed.
Corrected spelling in copyright text
Makefile.am:
Don't update the files from BitKeeper
Many files:
Removed "MySQL Finland AB & TCX DataKonsult AB" from copyright header
Adjusted year(s) in copyright header
Many files:
Added GPL copyright text
Removed files:
Docs/Support/colspec-fix.pl
Docs/Support/docbook-fixup.pl
Docs/Support/docbook-prefix.pl
Docs/Support/docbook-split
Docs/Support/make-docbook
Docs/Support/make-makefile
Docs/Support/test-make-manual
Docs/Support/test-make-manual-de
Docs/Support/xwf
- Removed not used variables and functions
- Added #ifdef around code that is not used
- Renamed variables and functions to avoid conflicts
- Removed some not used arguments
Fixed some class/struct warnings in ndb
Added define IS_LONGDATA() to simplify code in libmysql.c
I did run gcov on the changes and added 'purecov' comments on almost all lines that was not just variable name changes
Bug#4968 "Stored procedure crash if cursor opened on altered table"
Bug#19733 "Repeated alter, or repeated create/drop, fails"
Bug#19182 "CREATE TABLE bar (m INT) SELECT n FROM foo; doesn't work from
stored procedure."
Bug#6895 "Prepared Statements: ALTER TABLE DROP COLUMN does nothing"
Bug#22060 "ALTER TABLE x AUTO_INCREMENT=y in SP crashes server"
Test cases for bugs 4968, 19733, 6895 will be added in 5.0.
Re-execution of CREATE DATABASE, CREATE TABLE and ALTER TABLE
statements in stored routines or as prepared statements caused
incorrect results (and crashes in versions prior to 5.0.25).
In 5.1 the problem occured only for CREATE DATABASE, CREATE TABLE
SELECT and CREATE TABLE with INDEX/DATA DIRECTOY options).
The problem of bugs 4968, 19733, 19282 and 6895 was that functions
mysql_prepare_table, mysql_create_table and mysql_alter_table were not
re-execution friendly: during their operation they used to modify contents
of LEX (members create_info, alter_info, key_list, create_list),
thus making the LEX unusable for the next execution.
In particular, these functions removed processed columns and keys from
create_list, key_list and drop_list. Search the code in sql_table.cc
for drop_it.remove() and similar patterns to find evidence.
The fix is to supply to these functions a usable copy of each of the
above structures at every re-execution of an SQL statement.
To simplify memory management, LEX::key_list and LEX::create_list
were added to LEX::alter_info, a fresh copy of which is created for
every execution.
The problem of crashing bug 22060 stemmed from the fact that the above
metnioned functions were not only modifying HA_CREATE_INFO structure in
LEX, but also were changing it to point to areas in volatile memory of
the execution memory root.
The patch solves this problem by creating and using an on-stack
copy of HA_CREATE_INFO (note that code in 5.1 already creates and
uses a copy of this structure in mysql_create_table()/alter_table(),
but this approach didn't work well for CREATE TABLE SELECT statement).
Before this fix, a call to a User Defined Function (UDF) could,
under some circumstances, be interpreted as a call to a Stored function
instead. This occurred if a native function was invoked in the parameters
for the UDF, as in "select my_udf(abs(x))".
The root cause of this defect is the introduction, by the fix for Bug 21809,
of st_select_lex::udf_list, and it's usage in the parser in sql_yacc.yy
in the rule function_call_generic (in 5.1).
While the fix itself for Bug 21809 is correct in 5.0, the code change
merged into the 5.1 release created the issue, because the calls in 5.1 to :
- lex->current_select->udf_list.push_front(udf)
- lex->current_select->udf_list.pop()
are not balanced in case of native functions, causing the udf_list,
which is really a stack, to be out of sync with the internal stack
maintained by the bison parser.
Instead of moving the call to udf_list.pop(), which would have fixed the
symptom, this patch goes further and removes the need for udf_list.
This is motivated by two reasons:
a) Maintaining a stack in the MySQL code in sync with the stack maintained
internally in sql_yacc.cc (not .yy) is extremely dependent of the
implementation of yacc/bison, and extremely difficult to maintain.
It's also totally dependent of the structure of the grammar, and has a risk
to break with regression defects each time the grammar itself is changed.
b) The previous code did report construct like "foo(expr AS name)" as
syntax errors (ER_PARSER_ERROR), which is incorrect, and misleading.
The syntax is perfectly valid, as this expression is valid when "foo" is
a UDF. Whether this syntax is legal or not depends of the semantic of "foo".
With this change:
a) There is only one stack (in bison), and no List<udf_func> to maintain.
b) "foo(expr AS name)", when used incorrectly, is reported as semantic error:
- ER_WRONG_PARAMETERS_TO_NATIVE_FCT (for native functions)
- ER_WRONG_PARAMETERS_TO_STORED_FCT (for stored functions)
This is achieved by the changes implemented in item_create.cc
Backport of functionality in private 5.2 tree.
Added new language to parser, new mysql.servers table and associated code
to be used by the federated storage engine to allow central connection information
per WL entry.
Fixed compiler warnings (detected by VC++):
- Removed not used variables
- Added casts
- Fixed wrong assignments to bool
- Fixed wrong calls with bool arguments
- Added missing argument to store(longlong), which caused wrong store method to be called.
- Removed not used variables
- Changed some ulong parameters/variables to ulonglong (possible serious bug)
- Added casts to get rid of safe assignment from longlong to long (and similar)
- Added casts to function parameters
- Fixed signed/unsigned compares
- Added some constructores to structures
- Removed some not portable constructs
Better fix for bug Bug #21428 "skipped 9 bytes from file: socket (3)" on "mysqladmin shutdown"
(Added new parameter to net_clear() to define when we want the communication buffer to be emptied)
limitation)
Note to the reviewer
====================
Warning: reviewing this patch is somewhat involved.
Due to the nature of several issues all affecting the same area,
fixing separately each issue is not practical, since each fix can not be
implemented and tested independently.
In particular, the issues with
- rule recursion
- nested case statements
- forward jump resolution (backpatch list)
are tightly coupled (see below).
Definitions
===========
The expression
CASE expr
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Simple Case Expression".
The expression
CASE
WHEN expr THEN expr
WHEN expr THEN expr
...
END
is a "Searched Case Expression".
The statement
CASE expr
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Simple Case Statement".
The statement
CASE
WHEN expr THEN stmts
WHEN expr THEN stmts
...
END CASE
is a "Searched Case Statement".
A "Left Recursive" rule is like
list:
element
| list element
;
A "Right Recursive" rule is like
list:
element
| element list
;
Left and right recursion produces the same language, the difference only
affects the *order* in which the text is parsed.
In a descendant parser (usually written manually), right recursion works
very well, and is typically implemented with a while loop.
In an ascendant parser (yacc/bison) left recursion works very well,
and is implemented naturally by the parser stack.
In both cases, using the wrong type or recursion is very bad and should be
avoided, as it causes technical issues with the parser implementation.
Before this change
==================
The "Simple Case Expression" and "Searched Case Expression" were both
implemented by the "when_list" and "when_list2" rules, which are left
recursive (ok).
These rules, however, used lex->when_list instead of using the parser stack,
which is more complex that necessary, and potentially dangerous because
of other rules using THD::reset_lex.
The "Simple Case Statement" and "Searched Case Statements" were implemented
by the "sp_case", "sp_whens" and in part by "sp_proc_stmt" rules.
Both cases were right recursive (bad).
The grammar involved was convoluted, and is assumed to be the results of
tweaks to get the code generation to work, but is not what someone would
naturally write.
In addition, using a common rule for both "Simple" and "Searched" case
statements was implemented with sp_head::m_flags |= IN_SIMPLE_CASE,
which is a flag and not a stack, and therefore does not take into account
*nested* case statements. This leads to incorrect generated code, and either
a server crash or an incorrect result.
With regards to the backpatch mechanism, a *different* backpatch list was
created for each jump from "WHEN expr THEN stmt" to "END CASE", which
relied on the grammar to be right recursive.
This is a mis-use of the backpatch list, since this list can resolve
multiple references to the same target at once.
The optimizer algorithm used to detect dead code in the "assembly" SQL
instructions, implemented by sp_head::opt_mark(uint ip), was recursive
in some cases (a conditional jump pointing forward to another conditional
jump).
In case of specially crafted code, like
- a long list of "IF expr THEN stmt END IF"
- a long CASE statement
this would actually cause a server crash with a stack overflow.
In general, having a stack that grows proportionally with user data (the
SQL code given by the client in a CREATE PROCEDURE) is to be avoided.
In debug builds only, creating a SP / SF / Trigger which had a significant
amount of code would spend --literally-- several minutes in sp_head::create,
because of the debug code involved with DBUG_PRINT("info", ("Code %s ...
There are several issues with this code:
- in a CASE with 5 000 WHEN, there are 15 000 instructions generated,
which create a sting representation of the code which is 500 000 bytes
long,
- using a String instead of an io stream causes performances to degrade
to a total server freeze, as time is spent doing realloc of a buffer
always too short,
- Printing a 500 000 long string in the debug log is too verbose,
- Generating this string even when DBUG_PRINT is off is useless,
- Having code that potentially can affect the server behavior, used with
#ifdef / #endif is useful in some cases, but is also a bad practice.
After this change
=================
"Case Expressions" (both simple and searched) have been simplified to
not use LEX::when_list, which has been removed.
Considering all the issues affecting case statements, the grammar for these
has been totally re written.
The existing actions, used to generate "assembly" sp_inst* code, have been
preserved but moved in the new grammar, with the following changes:
a) Bison rules are no longer shared between "Simple" and "Searched" case
statements, because a stack instead of a flag is required to handle them.
Nested statements are handled naturally by the parser stack, which by
definition uses the correct rule in the correct context.
Nested statements of the opposite type (simple vs searched) works correctly.
The flag sp_head::IN_SIMPLE_CASE is no longer used.
This is a step towards resolution of WL#2999, which correctly identified
that temporary parsing flags do not belong to sp_head.
The code in the action is shared by mean of the case_stmt_action_xxx()
helpers.
b) The backpatch mechanism, used to resolve forward jumps in the generated
code, has been changed to:
- create a label for the instruction following 'END CASE',
- register each jump at the end of a "WHEN expr THEN stmt" in a *unique*
backpatch list associated with the 'END CASE' label
- resolve all the forward jumps for this label at once.
In addition, the code involving backpatch has been commented, so that a
reader can now understand by reading matching "Registering" and "Resolving"
comments how the forward jumps are resolved and what target they resolve to,
as this is far from evident when reading the code alone.
The implementation of sp_head::opt_mark() has been revised to avoid
recursive calls from jump instructions, and instead add the jump location
to the list of paths to explore during the flow analysis of the instruction
graph, with a call to sp_head::add_mark_lead().
In addition, the flow analysis will stop if an instruction has already
been marked as reachable, which the previous code failed to do in the
recursive case.
sp_head::opt_mark() is now private, to prevent new calls to this method from
being introduced.
The debug code present in sp_head::create() has been removed.
Considering that SHOW PROCEDURE CODE is also available in debug builds,
and can be used anytime regardless of the trace level, as opposed to
"CREATE PROCEDURE" time and only if the trace was on,
removing the code actually makes debugging easier (usable trace).
Tests have been written to cover the parser overflow (big CASE),
and to cover nested CASE statements.
Bug#21025 (misleading error message when creating functions named 'x', or 'y')
Bug#22619 (Spaces considered harmful)
This change contains a fix to report warnings or errors, and multiple tests
cases.
Before this fix, name collisions between:
- Native functions
- User Defined Functions
- Stored Functions
were not systematically reported, leading to confusing behavior.
I) Native / User Defined Function
Before this fix, is was possible to create a UDF named "foo", with the same
name as a native function "foo", but it was impossible to invoke the UDF,
since the syntax "foo()" always refer to the native function.
After this fix, creating a UDF fails with an error if there is a name
collision with a native function.
II) Native / Stored Function
Before this fix, is was possible to create a SF named "db.foo", with the same
name as a native function "foo", but this was confusing since the syntax
"foo()" would refer to the native function. To refer to the Stored Function,
the user had to use the "db.foo()" syntax.
After this fix, creating a Stored Function reports a warning if there is a
name collision with a native function.
III) User Defined Function / Stored Function
Before this fix, creating a User Defined Function "foo" and a Stored Function
"db.foo" are mutually exclusive operations. Whenever the second function is
created, an error is reported. However, the test suite did not cover this
behavior.
After this fix, the behavior is unchanged, and is now covered by test cases.
Note that the code change in this patch depends on the fix for Bug 21114.
Events: crash with procedure which alters events with function
Post-review CS
This fix also changes the handling of KILL command combined with
subquery. It changes the error message given back to "not supported",
from parse error. The error for CREATE|ALTER EVENT has also been changed
to generate "not supported yet" instead of parse error.
In case of a SP call, the error is "not supported yet". This change
cleans the parser from code which should not belong to there. Still
LEX::expr_allows_subselect is existant because it simplifies the handling
of SQLCOM_HA_READ which forbids subselects.
Use lazy initialization for Query_tables_list::sroutines hash.
This step should significantly decrease amount of memory consumed
by stored routines as we no longer will allocate chunk of memory
required for this HASH for each statement in routine.
Evaluate "NULL IN (SELECT ...)" in a special way: Disable pushed-down
conditions and their "consequences":
= Do full table scans instead of unique_[index_subquery] lookups.
= Change appropriate "ref_or_null" accesses to full table scans in
subquery's joins.
Also cache value of NULL IN (SELECT ...) if the SELECT is not correlated
wrt any upper select.
select OK.
The SQL parser was using Item::name to transfer user defined function attributes
to the user defined function (udf). It was not distinguishing between user defined
function call arguments and stored procedure call arguments. Setting Item::name
was causing Item_ref::print() method to print the argument as quoted identifiers
and caused views that reference aggregate functions as udf call arguments (and
rely on Item::print() for the text of the view to store) to throw an undefined
identifier error.
Overloaded Item_ref::print to print aggregate functions as such when printing
the references to aggregate functions taken out of context by split_sum_func2()
Fixed the parser to properly detect using AS clause in stored procedure arguments
as an error.
Fixed printing the arguments of udf call to print properly the udf attribute.
account predicates that become sargable after reading const tables.
In some cases this resulted in choosing non-optimal execution plans.
Now info of such potentially saragable predicates is saved in
an array and after reading const tables we check whether this
predicates has become saragable.
should fail to create
The problem was that this type of errors was checked during view
creation, which doesn't happen when CREATE VIEW is a statement of
a created stored routine.
The solution is to perform the checks at parse time. The idea of the
fix is that the parser checks if a construction just parsed is allowed
in current circumstances by testing certain flags, and this flags are
reset for VIEWs.
The side effect of this change is that if the user already have
such bogus routines, it will now get a error when trying to do
SHOW CREATE PROCEDURE proc;
(and some other) and when trying to execute such routine he will get
ERROR 1457 (HY000): Failed to load routine test.p5. The table mysql.proc is missing, corrupt, or contains bad data (internal code -6)
However there should be very few such users (if any), and they may
(and should) drop these bogus routines.
containing a select statement that uses an aggregating IN subquery.
Added a parameter to the function fix_prepare_information
to restore correctly the having clause for the second execution.
Saved andor structure of the having conditions at the proper moment
before any calls of split_sum_func2 that could modify the having structure
adding new Item_ref objects. (These additions, are produced not with
the statement mem_root, but rather with the execution mem_root.)
Remove SHOW SCHEDULER STATUS command and migrate the
information output to `mysqladmin debug` (COM_DEBUG)
SHOW SCHEDULER STATUS was introduced in 5.1.11, provided
some debug information about event scheduler internals and
was enabled only in debug builds.
make st_select_lex::setup_ref_array() take into account that
Item_sum-descendant objects located within descendant SELECTs
may be added into ref_pointer_array.
handle them.
Problem:
CREATE|ALTER EVENT, HANDLER READ, KILL, Partitioning uses `expr` from the
parser. This rule comes with all the rings and bells including subqueries.
However, these commands are not subquery safe. For this reason there are two
fuse checks in the parser. They were checking by command id. CREATE EVENT
should forbid subquery is the fix for
bug#16394 Events: Crash if schedule contains SELECT
The fix has been incorporated as part of the patch for WL#3337 (Event scheduler
new architecture).
Solution:
A new flag was added to LEX command_forbids_subselect. The fuse checks were
changed. The commands are responsible to set the value to true whenever
they can't handle subselects.
There is an existing macros for initializing LEX_STRINGs
with constant strings -> C_STRING_WITH_LEN. Change existing code to use it.
(char *) STRING_WITH_LEN -> C_STRING_WITH_LEN
- if there are two character set definitions in the column declaration,
we replace the first one with the second one as we store both in the LEX->charset
slot. Add a separate slot to the LEX structure to store underscore charset.
- convert default values to the column charset of STRING, VARSTRING fields
if necessary as well.
When executing ALTER TABLE all the attributes of the view were overwritten.
This is contrary to the user's expectations.
So some of the view attributes are preserved now : namely security and
algorithm. This means that if they are not specified in ALTER VIEW
their values are preserved from CREATE VIEW instead of being defaulted.
can be not replicable.
Now CREATE statements for writing in the binlog are created as follows:
- the beginning of the statement is re-created;
- the rest of the statement is copied from the original query.
The problem appears when there is a version-specific comment (produced by
mysqldump), started in the re-created part of the statement and closed in the
copied part -- there is closing comment-parenthesis, but there is no opening
one.
The proper fix could be to re-create original statement, but we can not
implement it in 5.0. So, for 5.0 the fix is just to cut closing
comment-parenthesis. This technique is also used for SHOW CREATE PROCEDURE
statement (so we are able to reuse existing code).
1) Fix for BUG#19630 "stored function inserting into two auto_increment breaks
statement-based binlog":
a stored function inserting into two such tables may fail to replicate
(inserting wrong data in the slave's copy of the second table) if the slave's
second table had an internal auto_increment counter different from master's.
Because the auto_increment value autogenerated by master for the 2nd table
does not go into binlog, only the first does, so the slave lacks information.
To fix this, if running in mixed binlogging mode, if the stored function or
trigger plans to update two different tables both having auto_increment
columns, we switch to row-based for the whole function.
We don't have a simple solution for statement-based binlogging mode, there
the bug remains and will be documented as a known problem.
Re-enabling rpl_switch_stm_row_mixed.
2) Fix for BUG#20630 "Mixed binlogging mode does not work with stored
functions, triggers, views", which was a documented limitation (in mixed
mode, we didn't detect that a stored function's execution needed row-based
binlogging (due to some UUID() call for example); same for
triggers, same for views (a view created from a SELECT UUID(), and doing
INSERT INTO sometable SELECT theview; would not replicate row-based).
This is implemented by, after parsing a routine's body, remembering in sp_head
that this routine needs row-based binlogging. Then when this routine is used,
the caller is marked to require row-based binlogging too.
Same for views: when we parse a view and detect that its SELECT needs
row-based binary logging, we mark the calling LEX as such.
3) Fix for BUG#20499 "mixed mode with temporary table breaks binlog":
a temporary table containing e.g. UUID has its changes not binlogged,
so any query updating a permanent table with data from the temporary table
will run wrongly on slave. Solution: in mixed mode we don't switch back
from row-based to statement-based when there exists temporary tables.
4) Attempt to test mysqlbinlog on a binlog generated by mysqlbinlog;
impossible due to BUG#11312 and BUG#20329, but test is in place for when
they are fixed.
This cut No 7 should finish the part of fixing the parsing of the events :
- Event_timed is no more used during parsing. Less problems because it has
a mutex. Event_parse_data class is used during parsing. It is suited only
for this purpose. It's pretty lightweight
- Late checking of data from parsing is being performed. This should solve
the problems of nested events in SP or other events (for the situation
of no nested bodies). Before if an ALTER EVENT was in a SP, then when the
SP was compiled, and not executed, the actual init_xxx methods of Event_timed
were called, which is wrong.
- It could be a side effect of using a specialized class, but test events_stress is
now 25% quicker.
Cut No8 will start splitting Event_scheduler into 2 parts, the QUEUE will be moved
to Event_queue.
The problem was that we restored SQL_CACHE, SQL_NO_CACHE flags in SELECT
statement from internal structures based on value set later at runtime, not
the original value set by the user.
The solution is to remember that original value.
Bug#19022 "Memory bug when switching db during trigger execution"
Bug#17199 "Problem when view calls function from another database."
Bug#18444 "Fully qualified stored function names don't work correctly in
SELECT statements"
Documentation note: this patch introduces a change in behaviour of prepared
statements.
This patch adds a few new invariants with regard to how THD::db should
be used. These invariants should be preserved in future:
- one should never refer to THD::db by pointer and always make a deep copy
(strmake, strdup)
- one should never compare two databases by pointer, but use strncmp or
my_strncasecmp
- TABLE_LIST object table->db should be always initialized in the parser or
by creator of the object.
For prepared statements it means that if the current database is changed
after a statement is prepared, the database that was current at prepare
remains active. This also means that you can not prepare a statement that
implicitly refers to the current database if the latter is not set.
This is not documented, and therefore needs documentation. This is NOT a
change in behavior for almost all SQL statements except:
- ALTER TABLE t1 RENAME t2
- OPTIMIZE TABLE t1
- ANALYZE TABLE t1
- TRUNCATE TABLE t1 --
until this patch t1 or t2 could be evaluated at the first execution of
prepared statement.
CURRENT_DATABASE() still works OK and is evaluated at every execution
of prepared statement.
Note, that in stored routines this is not an issue as the default
database is the database of the stored procedure and "use" statement
is prohibited in stored routines.
This patch makes obsolete the use of check_db_used (it was never used in the
old code too) and all other places that check for table->db and assign it
from THD::db if it's NULL, except the parser.
How this patch was created: THD::{db,db_length} were replaced with a
LEX_STRING, THD::db. All the places that refer to THD::{db,db_length} were
manually checked and:
- if the place uses thd->db by pointer, it was fixed to make a deep copy
- if a place compared two db pointers, it was fixed to compare them by value
(via strcmp/my_strcasecmp, whatever was approproate)
Then this intermediate patch was used to write a smaller patch that does the
same thing but without a rename.
TODO in 5.1:
- remove check_db_used
- deploy THD::set_db in mysql_change_db
See also comments to individual files.
SHOW STATUS are not anymore put in slow query log because of no index usage.
Implemntation done by removing orig_sql_command and moving logic of SHOW STATUS to mysql_excute_command()
This simplifies code and allows us to remove some if statements all over the code.
Upgraded uc_update_queries[] to sql_command_flags and added more bitmaps to better categorize commands.
This allowed some overall simplifaction when testing sql_command.
Fixes bugs:
Bug#10210: running SHOW STATUS increments counters it shouldn't
Bug#19764: SHOW commands end up in the slow log as table scans
The st_lex::which_check_option_applicable() function controls for which
statements WITH CHECK OPTION clause should be taken into account. REPLACE and
REPLACE_SELECT wasn't in the list which results in allowing REPLACE to insert
wrong rows in a such view.
The st_lex::which_check_option_applicable() now includes REPLACE and
REPLACE_SELECT in the list of statements for which WITH CHECK OPTION clause is
applicable.
Bug#18282 "INFORMATION_SCHEMA.TABLES provides inconsistent info about invalid views"
This bug caused crashes or resulted in wrong data being returned
when one tried to obtain information from I_S tables about views
using stored functions.
It was caused by the fact that we were using LEX representing
statement which were doing select from I_S tables as active LEX
when contents of I_S table were built. So state of this LEX both
affected and was affected by open_tables() calls which happened
during this process. This resulted in wrong behavior and in
violations of some of invariants which caused crashes.
This fix tries to solve this problem by properly saving/resetting
and restoring part of LEX which affects and is affected by the
process of opening tables and views in get_all_tables() routine.
To simplify things we separated this part of LEX in a new class
and made LEX its descendant.