MDEV-21953 deadlock between BACKUP STAGE BLOCK_COMMIT and parallel
replication
Fixed by partly reverting MDEV-21953 to put back MDL_BACKUP_COMMIT locking
before log_and_order.
The original problem for MDEV-21953 was that while a thread was waiting in
for another threads to commit in 'log_and_order', it had the
MDL_BACKUP_COMMIT lock. The backup thread was waiting to get the
MDL_BACKUP_WAIT_COMMIT lock, which blocks all new MDL_BACKUP_COMMIT locks.
This causes a deadlock as the waited-for thread can never get past the
MDL_BACKUP_COMMIT lock in ha_commit_trans.
The main part of the bug fix is to release the MDL_BACKUP_COMMIT lock while
a thread is waiting for other 'previous' threads to commit. This ensures
that no transactional thread keeps MDL_BACKUP_COMMIT while waiting, which
ensures that there are no deadlocks anymore.
- Adding optional qualifiers to data types:
CREATE TABLE t1 (a schema.DATE);
Qualifiers now work only for three pre-defined schemas:
mariadb_schema
oracle_schema
maxdb_schema
These schemas are virtual (hard-coded) for now, but may turn into real
databases on disk in the future.
- mariadb_schema.TYPE now always resolves to a true MariaDB data
type TYPE without sql_mode specific translations.
- oracle_schema.DATE translates to MariaDB DATETIME.
- maxdb_schema.TIMESTAMP translates to MariaDB DATETIME.
- Fixing SHOW CREATE TABLE to use a qualifier for a data type TYPE
if the current sql_mode translates TYPE to something else.
The above changes fix the reported problem, so this script:
SET sql_mode=ORACLE;
CREATE TABLE t2 AS SELECT mariadb_date_column FROM t1;
is now replicated as:
SET sql_mode=ORACLE;
CREATE TABLE t2 (mariadb_date_column mariadb_schema.DATE);
and the slave can unambiguously treat DATE as the true MariaDB DATE
without ORACLE specific translation to DATETIME.
Similar,
SET sql_mode=MAXDB;
CREATE TABLE t2 AS SELECT mariadb_timestamp_column FROM t1;
is now replicated as:
SET sql_mode=MAXDB;
CREATE TABLE t2 (mariadb_timestamp_column mariadb_schema.TIMESTAMP);
so the slave treats TIMESTAMP as the true MariaDB TIMESTAMP
without MAXDB specific translation to DATETIME.
* Allocate items on thd->mem_root while refixing vcol exprs
* Make vcol tree changes register and roll them back after the statement is executed.
Explanation:
Due to collation implementation specifics an Item tree could change while fixing.
The tricky thing here is to make it on a proper arena.
It's usually not a problem when a field is deterministic, however, makes a pain vice-versa, during allocation allocating.
A non-deterministic field should be refixed on each statement, since it depends on the environment state.
Changing the tree will be temporary and therefore it should be reverted after the statement execution.
When high priority replication slave applier encounters lock conflict in innodb,
it will force the conflicting lock holder transaction (victim) to rollback.
This is a must in multi-master sychronous replication model to avoid cluster lock-up.
This high priority victim abort (aka "brute force" (BF) abort), is started
from innodb lock manager while holding the victim's transaction's (trx) mutex.
Depending on the execution state of the victim transaction, it may happen that the
BF abort will call for THD::awake() to wake up the victim transaction for the rollback.
Now, if BF abort requires THD::awake() to be called, then the applier thread executed
locking protocol of: victim trx mutex -> victim THD::LOCK_thd_data
If, at the same time another DBMS super user issues KILL command to abort the same victim,
it will execute locking protocol of: victim THD::LOCK_thd_data -> victim trx mutex.
These two locking protocol acquire mutexes in opposite order, hence unresolvable mutex locking
deadlock may occur.
The fix in this commit adds THD::wsrep_aborter flag to synchronize who can kill the victim
This flag is set both when BF is called for from innodb and by KILL command.
Either path of victim killing will bail out if victim's wsrep_killed is already
set to avoid mutex conflicts with the other aborter execution. THD::wsrep_aborter
records the aborter THD's ID. This is needed to preserve the right to kill
the victim from different locations for the same aborter thread.
It is also good error logging, to see who is reponsible for the abort.
A new test case was added in galera.galera_bf_kill_debug.test for scenario where
wsrep applier thread and manual KILL command try to kill same idle victim
For low sort_buffer_size, in the cost calculation of using the Unique object the elements in the tree were evaluated to 0, make sure to have atleast 1 element in the Unique tree.
Also for the function Unique::get allocate memory for atleast MERGEBUFF2+1 keys.
cannot use the current THD::mem_root, because it can be temporarily
reassigned to something with a very different life time
(e.g. to TABLE::mem_root or range optimizer mem_root).
MDEV-21398 Deadlock (server hang) or assertion failure in
Diagnostics_area::set_error_status upon ALTER under lock
This failure could only happen if one locked the same table
multiple times and then did an ALTER TABLE on the table.
Major change is to change all instances of
table->m_needs_reopen= true;
to
table->mark_table_for_reopen();
The main fix for the problem was to ensure that we mark all
instances of the table in the locked_table_list and when we
reopen the tables, we first close all tables before reopening
and locking them.
Other things:
- Don't call thd->locked_tables_list.reopen_tables if there
are no tables marked for reopen. (performance)
- Added unlikely() to optimize for not having optimizer trace enabled
- Made THD::trace_started() inline
- Added 'if (trace_enabled())' around some potentially expensive code
(not many found)
- Added ASSERT's to ensure we don't call expensive optimizer trace calls
if optimizer trace is not enabled
- Added length to Json_writer functions to speed up buffer writes
when optimizer trace is enabled.
- Changed LEX_CSTRING argument handling to not send full struct to writer
function on_add_str() functions now trusts length arguments
* size represents the size of an element in the Unique class
* full_size is used when the Unique class counts the number of
duplicates stored per element. This requires additional space per Unique
element.
revision-id: 673e253724979fd9fe43a4a22bd7e1b2c3a5269e
Author: Kristian Nielsen
Fix missing memory barrier in wait_for_commit.
The function wait_for_commit::wait_for_prior_commit() has a fast path where it
checks without locks if wakeup_subsequent_commits() has already been called.
This check was missing a memory barrier. The waitee thread does two writes to
variables `waitee' and `wakeup_error', and if the waiting thread sees the
first write it _must_ also see the second or incorrect behavior will occur.
This requires memory barriers between both the writes (release semantics) and
the reads (acquire semantics) of those two variables.
Other accesses to these variables are done under lock or where only one thread
will be accessing them, and can be done without barriers (relaxed semantics).
mysql_insert() first opens all affected tables (which implicitly
starts a transaction in InnoDB), then stat tables.
A failure to open a stat table caused open_tables() to abort
the current stmt transaction (trans_rollback_stmt()). So, from the
server point of view the following ha_write_row()-s happened outside
of a transactions, and the server didn't bother to commit them.
The server has a mechanism to prevent a transaction being
unexpectedly committed or rolled back in the middle of a statement -
if an operation takes place _in a sub-statement_ it cannot change
the transaction state. Operations on stat tables are exactly that -
they are not allowed to change a transaction state. Put them in
a sub-statement to make sure they don't.
- Use local variables table and share to simplify code
- Use sql_command_flags to detect what kind of command was used
- Added CF_DELETES_DATA to simplify detecton of delete commands
- Removed duplicate error in create_table_from_items().
read_statistics_for_tables_if_needed
Regression after 279a907, read_statistics_for_tables_if_needed() was
called after open_normal_and_derived_tables() failure.
Fixed by moving read_statistics_for_tables() call to a branch of
get_schema_stat_record() where result of open_normal_and_derived_tables()
is checked.
Removed THD::force_read_stats, added read_statistics_for_tables() instead.
Simplified away statistics_for_command_is_needed().
Always initialize ScopedStatementReplication::saved_binlog_format,
so that GCC cannot emit a bogus warning about
ScopedStatementReplication::~ScopedStatementReplication() using the
variable.
The code was originally introduced in
commit d998da0306.
(Backported to 10.3, addressed review input)
Sj_materialization_picker::check_qep(): fix error in cost/fanout
calculations:
- for each join prefix, add #prefix_rows / TIME_FOR_COMPARE to the cost,
like best_extension_by_limited_search does
- Remove the fanout produced by the subquery tables.
- Also take into account join condition selectivity
optimize_wo_join_buffering() (used by LooseScan and FirstMatch)
- also add #prefix_rows / TIME_FOR_COMPARE to the cost of each prefix.
- Also take into account join condition selectivity
Problem:-
When mysql executes INSERT ON DUPLICATE KEY INSERT, the storage engine checks
if the inserted row would generate a duplicate key error. If yes, it returns
the existing row to mysql, mysql updates it and sends it back to the storage
engine.When the table has more than one unique or primary key, this statement
is sensitive to the order in which the storage engines checks the keys.
Depending on this order, the storage engine may determine different rows
to mysql, and hence mysql can update different rows.The order that the
storage engine checks keys is not deterministic. For example, InnoDB checks
keys in an order that depends on the order in which indexes were added to
the table. The first added index is checked first. So if master and slave
have added indexes in different orders, then slave may go out of sync.
Solution:-
Make INSERT...ON DUPLICATE KEY UPDATE unsafe while using stmt or mixed format
When there is more then one unique key.
Although there is two exception.
1. Auto Increment key is not counted because Innodb will get gap lock for
failed Insert and concurrent insert will get a next increment value. But if
user supplies auto inc value it can be unsafe.
2. Count only unique keys for which insertion is performed.
So this patch also addresses the bug id #72921