The Item_func_mod objects never had maybe_null set, so users had no reason
to expect that they can be NULL, and may therefore deduce wrong results.
Now, set maybe_null.
If the error happens during DELETE IGNORE, nothing could be send to the
client, thus leaving it frozen expecting the reply.
The problem was that if some error occurred, it wouldn't be reported to
the client because of IGNORE, but neither success would be reported.
MySQL 4.1 would not freeze the client, but will report
ERROR 1105 (HY000): Unknown error
instead, which is also a bug.
The solution is to report success if we are in DELETE IGNORE and some
non-fatal error has happened.
We miss some records sometimes using RANGE method if we have
partial key segments.
Example:
Create table t1(a char(2), key(a(1)));
insert into t1 values ('a'), ('xx');
select a from t1 where a > 'x';
We call index_read() passing 'x' key and HA_READ_AFTER_KEY flag
in the handler::read_range_first() wich is wrong because we have
a partial key segment for the field and might miss records like 'xx'.
Fix: don't use open segments in such a case.
Repair table could crash a server if there is not sufficient
memory (myisam_sort_buffer_size) to operate. Affects not only
repair, but also all statements that use create index by sort:
repair by sort, parallel repair, bulk insert.
Return an error if there is not sufficient memory to store at
least one key per BUFFPEK.
Also fixed memory leak if thr_find_all_keys returns an error.
When resolving unqualified name references MySQL was not
checking what is the item type for the reference. Thus
e.g a string literal item that has by convention a name
equal to its string value will also work as a reference to
a SELECT list item or a table field.
Fixed by allowing only Item_ref or Item_field to referenced by
(unqualified) name.
hangs on Linux
If REPAIR TABLE ... USE_FRM is issued for table that is located in different
than default database server crash could happen.
In reopen_name_locked_table take database name from table_list (user specified
or default database) instead of from thd (default database).
Affects 4.1 only.
The bug is present only in 4.1, will be null-merged to 5.0
For InnoDB, check value of thd->transaction.all.innodb_active_trans instead of thd->transaction.stmt.innobase_tid to see if we really need to rollback.
statement.
The problem was that during statement re-execution if the result was
empty the old result could be returned for group functions.
The solution is to implement proper cleanup() method in group
functions.
When the client program had its stdout file descriptor closed by the calling
shell, after some amount of work (enough to fill a socket buffer) the server
would complain about a packet error and then disconnect the client.
This is a serious security problem. If stdout is closed before the mysql is
exec()d, then the first socket() call allocates file number 1 to communicate
with the server. Subsequent write()s to that file number (as when printing
results that come back from the database) go back to the server instead in
the command channel. So, one should be able to craft data which, upon being
selected back from the server to the client, and injected into the command
stream become valid MySQL protocol to do something nasty when sent /back/ to
the server.
The solution is to close explicitly the file descriptor that we *printf() to,
so that the libc layer and the OS layer both agree that the file is closed.
OPTIMIZE TABLE with myisam_repair_threads > 1 performs a non-quick
parallel repair. This means that it does not only rebuild all
indexes, but also the data file.
Non-quick parallel repair works so that there is one thread per
index. The first of the threads rebuilds also the new data file.
The problem was that all threads shared the read io cache on the
old data file. If there were holes (deleted records) in the table,
the first thread skipped them, writing only contiguous, non-deleted
records to the new data file. Then it built the new index so that
its entries pointed to the correct record positions. But the other
threads didn't know the new record positions, but put the positions
from the old data file into the index.
The new design is so that there is a shared io cache which is filled
by the first thread (the data file writer) with the new contiguous
records and read by the other threads. Now they know the new record
positions.
Another problem was that for the parallel repair of compressed
tables a common bit_buff and rec_buff was used. I changed it so
that thread specific buffers are used for parallel repair.
A similar problem existed for checksum calculation. I made this
multi-thread safe too.
Note: bug#21726 does not directly apply to 4.1, as it doesn't have stored
procedures. However, 4.1 had some bugs that were fixed in 5.0 by the
patch for bug#21726, and this patch is a backport of those fixes.
Namely, in 4.1 it fixes:
- LAST_INSERT_ID(expr) didn't return value of expr (4.1 specific).
- LAST_INSERT_ID() could return the value generated by current
statement if the call happens after the generation, like in
CREATE TABLE t1 (i INT AUTO_INCREMENT PRIMARY KEY, j INT);
INSERT INTO t1 VALUES (NULL, 0), (NULL, LAST_INSERT_ID());
- Redundant binary log LAST_INSERT_ID_EVENTs could be generated.
Though this is not storage engine specific problem, I was able to
repeat this problem with BDB and NDB engines only. That was the
reason to add a test case into ndb_update.test. As a result
different bad things could happen.
BDB has removed duplicate rows which is not expected.
NDB returns an error.
For multi table update notify storage engine about UPDATE IGNORE
as it is done in single table UPDATE.