Making changes to wsrep_mysqld.h causes large parts of server code to
be recompiled. The reason is that wsrep_mysqld.h is included by
sql_class.h, even tough very little of wsrep_mysqld.h is needed in
sql_class.h. This commit introduces a new header file, wsrep_on.h,
which is meant to be included from sql_class.h, and contains only
macros and variable declarations used to determine whether wsrep is
enabled.
Also, header wsrep.h should only contain definitions that are also
used outside of sql/. Therefore, move WSREP_TO_ISOLATION* and
WSREP_SYNC_WAIT macros to wsrep_mysqld.h.
Reviewed-by: Jan Lindström <jan.lindstrom@mariadb.com>
- Added one neutral and 22 tailored (language specific) collations based on
Unicode Collation Algorithm version 14.0.0.
Collations were added for Unicode character sets
utf8mb3, utf8mb4, ucs2, utf16, utf32.
Every tailoring was added with four accent and case
sensitivity flag combinations, e.g:
* utf8mb4_uca1400_swedish_as_cs
* utf8mb4_uca1400_swedish_as_ci
* utf8mb4_uca1400_swedish_ai_cs
* utf8mb4_uca1400_swedish_ai_ci
and their _nopad_ variants:
* utf8mb4_uca1400_swedish_nopad_as_cs
* utf8mb4_uca1400_swedish_nopad_as_ci
* utf8mb4_uca1400_swedish_nopad_ai_cs
* utf8mb4_uca1400_swedish_nopad_ai_ci
- Introducing a conception of contextually typed named collations:
CREATE DATABASE db1 CHARACTER SET utf8mb4;
CREATE TABLE db1.t1 (a CHAR(10) COLLATE uca1400_as_ci);
The idea is that there is no a need to specify the character set prefix
in the new collation names. It's enough to type just the suffix
"uca1400_as_ci". The character set is taken from the context.
In the above example script the context character set is utf8mb4.
So the CREATE TABLE will make a column with the collation
utf8mb4_uca1400_as_ci.
Short collations names can be used in any parts of the SQL syntax
where the COLLATE clause is understood.
- New collations are displayed only one time
(without character set combinations) by these statements:
SELECT * FROM INFORMATION_SCHEMA.COLLATIONS;
SHOW COLLATION;
For example, all these collations:
- utf8mb3_uca1400_swedish_as_ci
- utf8mb4_uca1400_swedish_as_ci
- ucs2_uca1400_swedish_as_ci
- utf16_uca1400_swedish_as_ci
- utf32_uca1400_swedish_as_ci
have just one entry in INFORMATION_SCHEMA.COLLATIONS and SHOW COLLATION,
with COLLATION_NAME equal to "uca1400_swedish_as_ci", which is the suffix
without the character set name:
SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
WHERE COLLATION_NAME LIKE '%uca1400_swedish_as_ci';
+-----------------------+
| COLLATION_NAME |
+-----------------------+
| uca1400_swedish_as_ci |
+-----------------------+
Note, the behaviour of old collations did not change.
Non-unicode collations (e.g. latin1_swedish_ci) and
old UCA-4.0.0 collations (e.g. utf8mb4_unicode_ci)
are still displayed with the character set prefix, as before.
- The structure of the table INFORMATION_SCHEMA.COLLATIONS was changed.
The NOT NULL constraint was removed from these columns:
- CHARACTER_SET_NAME
- ID
- IS_DEFAULT
and from the corresponding columns in SHOW COLLATION.
For example:
SELECT COLLATION_NAME, CHARACTER_SET_NAME, ID, IS_DEFAULT
FROM INFORMATION_SCHEMA.COLLATIONS
WHERE COLLATION_NAME LIKE '%uca1400_swedish_as_ci';
+-----------------------+--------------------+------+------------+
| COLLATION_NAME | CHARACTER_SET_NAME | ID | IS_DEFAULT |
+-----------------------+--------------------+------+------------+
| uca1400_swedish_as_ci | NULL | NULL | NULL |
+-----------------------+--------------------+------+------------+
The NULL value in these columns now means that the collation
is applicable to multiple character sets.
The behavioir of old collations did not change.
Make sure your client programs can handle NULL values in these columns.
- The structure of the table
INFORMATION_SCHEMA.COLLATION_CHARACTER_SET_APPLICABILITY was changed.
Three new NOT NULL columns were added:
- FULL_COLLATION_NAME
- ID
- IS_DEFAULT
New collations have multiple entries in COLLATION_CHARACTER_SET_APPLICABILITY.
The column COLLATION_NAME contains the collation name without the character
set prefix. The column FULL_COLLATION_NAME contains the collation name with
the character set prefix.
Old collations have full collation name in both FULL_COLLATION_NAME and
COLLATION_NAME.
SELECT COLLATION_NAME, FULL_COLLATION_NAME, CHARACTER_SET_NAME, ID, IS_DEFAULT
FROM INFORMATION_SCHEMA.COLLATION_CHARACTER_SET_APPLICABILITY
WHERE FULL_COLLATION_NAME RLIKE '^(utf8mb4|latin1).*swedish.*ci$';
+-----------------------------+-------------------------------------+--------------------+------+------------+
| COLLATION_NAME | FULL_COLLATION_NAME | CHARACTER_SET_NAME | ID | IS_DEFAULT |
+-----------------------------+-------------------------------------+--------------------+------+------------+
| latin1_swedish_ci | latin1_swedish_ci | latin1 | 8 | Yes |
| latin1_swedish_nopad_ci | latin1_swedish_nopad_ci | latin1 | 1032 | |
| utf8mb4_swedish_ci | utf8mb4_swedish_ci | utf8mb4 | 232 | |
| uca1400_swedish_ai_ci | utf8mb4_uca1400_swedish_ai_ci | utf8mb4 | 2368 | |
| uca1400_swedish_as_ci | utf8mb4_uca1400_swedish_as_ci | utf8mb4 | 2370 | |
| uca1400_swedish_nopad_ai_ci | utf8mb4_uca1400_swedish_nopad_ai_ci | utf8mb4 | 2372 | |
| uca1400_swedish_nopad_as_ci | utf8mb4_uca1400_swedish_nopad_as_ci | utf8mb4 | 2374 | |
+-----------------------------+-------------------------------------+--------------------+------+------------+
- Other INFORMATION_SCHEMA queries:
SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLUMNS;
SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.PARAMETERS;
SELECT TABLE_COLLATION FROM INFORMATION_SCHEMA.TABLES;
SELECT DEFAULT_COLLATION_NAME FROM INFORMATION_SCHEMA.SCHEMATA;
SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.ROUTINES;
SELECT COLLATION_CONNECTION FROM INFORMATION_SCHEMA.EVENTS;
SELECT DATABASE_COLLATION FROM INFORMATION_SCHEMA.EVENTS;
SELECT COLLATION_CONNECTION FROM INFORMATION_SCHEMA.ROUTINES;
SELECT DATABASE_COLLATION FROM INFORMATION_SCHEMA.ROUTINES;
SELECT COLLATION_CONNECTION FROM INFORMATION_SCHEMA.TRIGGERS;
SELECT DATABASE_COLLATION FROM INFORMATION_SCHEMA.TRIGGERS;
SELECT COLLATION_CONNECTION FROM INFORMATION_SCHEMA.VIEWS;
display full collation names, including character sets prefix,
for all collations, including new collations.
Corresponding SHOW commands also display full collation names
in collation related columns:
SHOW CREATE TABLE t1;
SHOW CREATE DATABASE db1;
SHOW TABLE STATUS;
SHOW CREATE FUNCTION f1;
SHOW CREATE PROCEDURE p1;
SHOW CREATE EVENT ev1;
SHOW CREATE TRIGGER tr1;
SHOW CREATE VIEW;
These INFORMATION_SCHEMA queries and SHOW statements may change in
the future, to display show collation names.
Bring the 5 warnings of select random_bytes(cast('x' as unsigned)+1);
back to two. 1 for Item_func_random_bytes::fix_length_and_dec and
one from Item_func_random_bytes::val_str.
The warnings are from args[0]->val_int().
Setting max_length to a negative value in Item_func_random_bytes::fix_length_and_dec
underflowed resulting in debug optimizer assertion.
Also set the maximium to 1024 rather than MAX_BLOB_WIDTH because
we aren't going to return more than that.
Item::save_str_in_field() passes &Item::str_value as a parameter
to val_str().
Item_func::make_empty_result() also fills and returns str_value.
As a result, in the reported scenario in
Item_func::val_str_from_val_str_ascii()
both "str" and "res" pointed to Item::str_value,
which made the DBUG_ASSERT inside String::copy()
(preventing copying to itself) crash:
if ((null_value= str->copy(res->ptr(), res->length(),
&my_charset_latin1, collation.collation,
&errors)))
Fix:
- Adding a String* parameter to make_empty_result()
- Passing the val_str() parameter to make_empty_string().
We used to define a native unary function CRC32() that computes the CRC-32
of a string using the ISO 3309 polynomial that is being used by zlib
and many others.
Often, a CRC is computed in pieces. To faciliate this, we introduce a
2-ary variant of the function that inputs a previous CRC as the first
argument: CRC32('MariaDB')=CRC32(CRC32('Maria'),'DB').
InnoDB and MyRocks use a different polynomial, which was implemented
in SSE4.2 instructions that were introduced in the
Intel Nehalem microarchitecture. This is commonly called CRC-32C
(Castagnoli).
We introduce a native function that uses the Castagnoli polynomial:
CRC32C('MariaDB')=CRC32C(CRC32C('Maria'),'DB'). This allows
SELECT...INTO DUMPFILE to be used for the creation of files with
valid checksums, such as a logically empty InnoDB redo log file
ib_logfile0 corresponding to a particular log sequence number.
The reason for crash is that natural_sort_key(release_lock('a')) would
evaluate release_lock() twice, once in Item::is_null() and another time
in Item::val_str(). Second time it returns NULL, since lock was already
released.
Fixed to prevent double evaluation.
Leading zeros added a single byte overhead per numeric string,
even when they were. Sorting leading zeros offers only for little value
(except determinism in sort). I decided to drop it for now, we can be
like ICU, which drops leading zeros, in numeric sorting,
even with IDENTICAL collation strength.
Also, disabled virtual stored columns (thus also indexes), on Serg's request
Hopefully it is temporarily, and will be reenabled soon, when everyone is
as happy with key generation algorithm as I am.
- return error from natsort_encode_numeric_key, if it would need
to allocate memory. All needed memory was preallocated much earlier.
- Add test for sort order of leading zero vs numeric strings with suffix.
- Remove second optional parameter to natural_sort_key(), and all fraction
handling.
- Rename natsort_num2str() to natsort_encode_length() to show the intention
that it encodes string *lengths*, and not encode whitespaces and what not.
Handles lengths for which log10(len) >= 10, even if they do not happen for
MariaDB Strings (where length is limited by 32bit, and log10(len) is <= 9)
- Do not let natural sort key grow past max_packet_length.
- Split Item_func_natural_sort_key::val_str() further and add
natsort_encode_numeric_string(), which contains comment on how
whitespaces are handled.
- Simplify, and speedup to_natsort_key() in common case, by removing
handling of weird charsets utf16/32, that encode numbers in several bytes.
In rare cases utf16/32 is used, we'll convert to utf8 prior to
creating keys, and back to original charset afterwards.
The numbers should be compared as numbers, while the rest should be compared
as string.
Introduce natural_sort_key() function that transforms original string
so that the lexicographic order of such keys is suitable for
natural sort.