Bug #20662 "Infinite loop in CREATE TABLE IF NOT EXISTS ... SELECT
with locked tables"
Bug #20903 "Crash when using CREATE TABLE .. SELECT and triggers"
Bug #24738 "CREATE TABLE ... SELECT is not isolated properly"
Bug #24508 "Inconsistent results of CREATE TABLE ... SELECT when
temporary table exists"
Deadlock occured when one tried to execute CREATE TABLE IF NOT
EXISTS ... SELECT statement under LOCK TABLES which held
read lock on target table.
Attempt to execute the same statement for already existing
target table with triggers caused server crashes.
Also concurrent execution of CREATE TABLE ... SELECT statement
and other statements involving target table suffered from
various races (some of which might've led to deadlocks).
Finally, attempt to execute CREATE TABLE ... SELECT in case
when a temporary table with same name was already present
led to the insertion of data into this temporary table and
creation of empty non-temporary table.
All above problems stemmed from the old implementation of CREATE
TABLE ... SELECT in which we created, opened and locked target
table without any special protection in a separate step and not
with the rest of tables used by this statement.
This underminded deadlock-avoidance approach used in server
and created window for races. It also excluded target table
from prelocking causing problems with trigger execution.
The patch solves these problems by implementing new approach to
handling of CREATE TABLE ... SELECT for base tables.
We try to open and lock table to be created at the same time as
the rest of tables used by this statement. If such table does not
exist at this moment we create and place in the table cache special
placeholder for it which prevents its creation or any other usage
by other threads.
We still use old approach for creation of temporary tables.
Also note that we decided to postpone introduction of some tests
for concurrent behaviour of CREATE TABLE ... SELECT till 5.1.
The main reason for this is absence in 5.0 ability to set @@debug
variable at runtime, which can be circumvented only by using several
test files with individual .opt files. Since the latter is likely
to slowdown test-suite unnecessary we chose not to push this tests
into 5.0, but run them manually for this version and later push
their optimized version into 5.1
NO_AUTO_VALUE_ON_ZERO mode.
In the NO_AUTO_VALUE_ON_ZERO mode the table->auto_increment_field_not_null
variable is used to indicate that a non-NULL value was specified by the user
for an auto_increment column. When an INSERT .. ON DUPLICATE updates the
auto_increment field this variable is set to true and stays unchanged for the
next insert operation. This makes the next inserted row sometimes wrongly have
0 as the value of the auto_increment field.
Now the fill_record() function resets the table->auto_increment_field_not_null
variable before filling the record.
The table->auto_increment_field_not_null variable is also reset by the
open_table() function for a case if we missed some auto_increment_field_not_null
handling bug.
Now the table->auto_increment_field_not_null is reset at the end of the
mysql_load() function.
Reset the table->auto_increment_field_not_null variable after each
write_row() call in the copy_data_between_tables() function.
what it actually means (Monty approved the renaming)
- correcting description of transaction_alloc command-line options
(our manual is correct)
- fix for a failure of rpl_trigger.
Bug 18914 (Calling certain SPs from triggers fail)
Bug 20713 (Functions will not not continue for SQLSTATE VALUE '42S02')
Bug 21825 (Incorrect message error deleting records in a table with a
trigger for inserting)
Bug 22580 (DROP TABLE in nested stored procedure causes strange dependency
error)
Bug 25345 (Cursors from Functions)
This fix resolves a long standing issue originally reported with bug 8407,
which affect the behavior of Stored Procedures, Stored Functions and Trigger
in many different ways, causing symptoms reported by all the bugs listed.
In all cases, the root cause of the problem traces back to 8407 and how the
server locks tables involved with sub statements.
Prior to this fix, the implementation of stored routines would:
- compute the transitive closure of all the tables referenced by a top level
statement
- open and lock all the tables involved
- execute the top level statement
"transitive closure of tables" means collecting:
- all the tables,
- all the stored functions,
- all the views,
- all the table triggers
- all the stored procedures
involved, and recursively inspect these objects definition to find more
references to more objects, until the list of every object referenced does
not grow any more.
This mechanism is known as "pre-locking" tables before execution.
The motivation for locking all the tables (possibly) used at once is to
prevent dead locks.
One problem with this approach is that, if the execution path the code
really takes during runtime does not use a given table, and if the table is
missing, the server would not execute the statement.
This in particular has a major impact on triggers, since a missing table
referenced by an update/delete trigger would prevent an insert trigger to run.
Another problem is that stored routines might define SQL exception handlers
to deal with missing tables, but the server implementation would never give
user code a chance to execute this logic, since the routine is never
executed when a missing table cause the pre-locking code to fail.
With this fix, the internal implementation of the pre-locking code has been
relaxed of some constraints, so that failure to open a table does not
necessarily prevent execution of a stored routine.
In particular, the pre-locking mechanism is now behaving as follows:
1) the first step, to compute the transitive closure of all the tables
possibly referenced by a statement, is unchanged.
2) the next step, which is to open all the tables involved, only attempts
to open the tables added by the pre-locking code, but silently fails without
reporting any error or invoking any exception handler is the table is not
present. This is achieved by trapping internal errors with
Prelock_error_handler
3) the locking step only locks tables that were successfully opened.
4) when executing sub statements, the list of tables used by each statements
is evaluated as before. The tables needed by the sub statement are expected
to be already opened and locked. Statement referencing tables that were not
opened in step 2) will fail to find the table in the open list, and only at
this point will execution of the user code fail.
5) when a runtime exception is raised at 4), the instruction continuation
destination (the next instruction to execute in case of SQL continue
handlers) is evaluated.
This is achieved with sp_instr::exec_open_and_lock_tables()
6) if a user exception handler is present in the stored routine, that
handler is invoked as usual, so that ER_NO_SUCH_TABLE exceptions can be
trapped by stored routines. If no handler exists, then the runtime execution
will fail as expected.
With all these changes, a side effect is that view security is impacted, in
two different ways.
First, a view defined as "select stored_function()", where the stored
function references a table that may not exist, is considered valid.
The rationale is that, because the stored function might trap exceptions
during execution and still return a valid result, there is no way to decide
when the view is created if a missing table really cause the view to be invalid.
Secondly, testing for existence of tables is now done later during
execution. View security, which consist of trapping errors and return a
generic ER_VIEW_INVALID (to prevent disclosing information) was only
implemented at very specific phases covering *opening* tables, but not
covering the runtime execution. Because of this existing limitation,
errors that were previously trapped and converted into ER_VIEW_INVALID are
not trapped, causing table names to be reported to the user.
This change is exposing an existing problem, which is independent and will
be resolved separately.
The crash happens because second filling of the same I_S table happens in
case of subselect with order by. table->sort.io_cache previously allocated
in create_sort_index() is deleted during second filling
(function get_schema_tables_result). There are two places where
I_S table can be filled: JOIN::exec and create_sort_index().
To fix the bug we should check if the table was already filled
in one of these places and skip processing of the table in second.
Corrected spelling in copyright text
Makefile.am:
Don't update the files from BitKeeper
Many files:
Removed "MySQL Finland AB & TCX DataKonsult AB" from copyright header
Adjusted year(s) in copyright header
Many files:
Added GPL copyright text
Removed files:
Docs/Support/colspec-fix.pl
Docs/Support/docbook-fixup.pl
Docs/Support/docbook-prefix.pl
Docs/Support/docbook-split
Docs/Support/make-docbook
Docs/Support/make-makefile
Docs/Support/test-make-manual
Docs/Support/test-make-manual-de
Docs/Support/xwf
This is a performance issue for queries with subqueries evaluation
of which requires filesort.
Allocation of memory for the sort buffer at each evaluation of a
subquery may take a significant amount of time if the buffer is rather big.
With the fix we allocate the buffer at the first evaluation of the
subquery and reuse it at each subsequent evaluation.
When executing ALTER TABLE all the attributes of the view were overwritten.
This is contrary to the user's expectations.
So some of the view attributes are preserved now : namely security and
algorithm. This means that if they are not specified in ALTER VIEW
their values are preserved from CREATE VIEW instead of being defaulted.
The fix is: if user has privileges to view fields and user has any
(insert,select,delete,update) privileges on underlying view
then 'show fields' and select from I_S.COLUMNS table are sucsessful.
dropping/creating tables".
The bug could lead to a crash when multi-delete statements were
prepared and used with temporary tables.
The bug was caused by lack of clean-up of multi-delete tables before
re-execution of a prepared statement. In a statement like
DELETE t1 FROM t1, t2 WHERE ... the first table list (t1) is
moved to lex->auxilliary_table_list and excluded from lex->query_tables
or select_lex->tables. Thus it was unaccessible to reinit_stmt_before_use
and not cleaned up before re-execution of a prepared statement.
Table comment: issue a warning(error in traditional mode) if length of comment > 60 symbols
Column comment: issue a warning(error in traditional mode) if length of comment > 255 symbols
Table 'comment' is changed from char* to LEX_STRING
Re-work best_access_path() and find_best() to reuse E(#rows(range access)) as
E(#rows(ref[_or_null](const) access) only when it is appropriate.
[This is the final cumulative patch]
The cause of this bug was a design flaw due to which the list of natural
join columns was incorrectly computed and stored for nested joins that
are not natural joins, but are operands (possibly indirect) of nested joins.
The patch corrects the flaw in a such a way, that the result columns of a
table reference are materialized only if it is a leaf table (that is, only
if it is a view, stored table, or natural/using join).
- Added empty constructors and virtual destructors to many classes and structs
- Removed some usage of the offsetof() macro to instead use C++ class pointers
Post-review fixes that simplify the way access rights
are checked during name resolution and factor out all
entry points to check access rights into one single
function.
Ensure that ccache is also used for C programs
mysql: Ensure that 'delimiter' works the same way in batch mode as in normal mode
mysqldump: Change to use ;; (instead of //) as a stored procedure/trigger delimiter
Fixed test cases by adding missing DROP's and rename views to be of type 'v#'
Removed MY_UNIX_PATH from fn_format()
Removed current_db_used from TABLE_LIST
Removed usage of 'current_thd' in Item_splocal
Removed some compiler warnings
A bit faster longlong2str code
cursor is interpreted latin1 character and Bug#9819 "Cursors: Mysql Server
Crash while fetching from table with 5 million records."
A fix for a possible memory leak when fetching into an SP cursor
in a long loop.
The patch uses a common implementation of cursors in the binary protocol and
in stored procedures and implements materialized cursors.
For implementation details, see comments in sql_cursor.cc