PARS_INTEGER_TOKEN: Remove. The lexer returns only PARS_INT_TOKEN.
PARS_FIXBINARY_LIT, PARS_BLOB_LIT: Remove. These are never returned
by the lexer. In sym_tab_add_bound_lit(), use PARS_STR_LIT.
dict_index_is_sec_or_ibuf(): Use a single arithmetic expression.
rtr_split_page_move_rec_list(): Remove a redundant condition on
dict_index_is_sec_or_ibuf(). This function is always invoked on
a spatial index, which also is a secondary index.
use CMAKE_CXX_STANDARD to set C++11 flags with CMake 3.1+ (apples flags are somehow different from standard clang)
port htonbe16/32/64 macros for rocksdb
use reinterpret_cast<size_t> to cast macOS's pthread_t (pointer type) to size_t , for rocksdb
ha_innobase::defragment_table(): Skip corrupted indexes and
FULLTEXT INDEX. In InnoDB, FULLTEXT INDEX is implemented with
auxiliary tables. We will not defragment them on OPTIMIZE TABLE.
buf_dblwr_create(): Remove a bogus check for the buffer pool size.
Theoretically, there is no problem if the doublewrite buffer is
larger than the buffer pool. It could only cause trouble on crash
recovery, and on recovery the doublewrite buffer is read to a buffer
that is allocated outside of the buffer pool. Moreover, this check
was only performed when the database was initialized for the first
time.
On a normal startup, buf_dblwr_init() would not enforce any
rule on the innodb_buffer_pool_size.
Furthermore, in case of an error, commit the mini-transaction in order
to avoid an assertion failure on shutdown. Yes, this will leave the
doublewrite buffer in a corrupted stage, but the doublewrite buffer
should only be initialized when the data files are being initialized
from the scratch in the first place.
Fixes compile error that highlights problem:
/source/storage/innobase/fil/fil0crypt.cc: In function 'void fil_crypt_rotate_page(const key_state_t*, rotate_thread_t*)':
/source/storage/innobase/fil/fil0crypt.cc:1770:15: error: ISO C++ forbids comparison between pointer and integer [-fpermissive]
if (space == TRX_SYS_SPACE && offset == TRX_SYS_PAGE_NO) {
Signed-off-by: Daniel Black <daniel.black@au.ibm.com>
Also, some MDEV-11738/MDEV-11581 post-push fixes.
In MariaDB 10.1, there is no fil_space_t::is_being_truncated field,
and the predicates fil_space_t::stop_new_ops and fil_space_t::is_stopping()
are interchangeable. I requested the fil_space_t::is_stopping() to be added
in the review, but some added checks for fil_space_t::stop_new_ops were
not replaced with calls to fil_space_t::is_stopping().
buf_page_decrypt_after_read(): In this low-level I/O operation, we must
look up the tablespace if it exists, even though future I/O operations
have been blocked on it due to a pending DDL operation, such as DROP TABLE
or TRUNCATE TABLE or other table-rebuilding operations (ALTER, OPTIMIZE).
Pass a parameter to fil_space_acquire_low() telling that we are performing
a low-level I/O operation and the fil_space_t::is_stopping() status should
be ignored.
remove hard-coded paths (that assumed we're in a source tree)
remove various shell/perl/awk/whatsnot scripts, use mysqltest and perl
remove numerous --exec /some/unix/tool commands, use mysqltest and perl
namely, restart_mysqld_with_option.inc and kill_and_restart_mysqld.inc -
use restart_mysqld.inc instead.
Also remove innodb_wl6501_crash_stripped.inc that wasn't used anywhere.
InnoDB divides the allocation of undo logs into rollback segments.
The DB_ROLL_PTR system column of clustered indexes can address up to
128 rollback segments (TRX_SYS_N_RSEGS). Originally, InnoDB only
created one rollback segment. In MySQL 5.5 or in the InnoDB Plugin
for MySQL 5.1, all 128 rollback segments were created.
MySQL 5.7 hard-codes the rollback segment IDs 1..32 for temporary undo logs.
On upgrade, unless a slow shutdown (innodb_fast_shutdown=0)
was performed on the old server instance, these rollback segments
could be in use by transactions that are in XA PREPARE state or
transactions that were left behind by a server kill followed by a
normal shutdown immediately after restart.
Persistent tables cannot refer to temporary undo logs or vice versa.
Therefore, we should keep two distinct sets of rollback segments:
one for persistent tables and another for temporary tables. In this way,
all 128 rollback segments will be available for both types of tables,
which could improve performance. Also, MariaDB 10.2 will remain more
compatible than MySQL 5.7 with data files from earlier versions of
MySQL or MariaDB.
trx_sys_t::temp_rsegs[TRX_SYS_N_RSEGS]: A new array of temporary
rollback segments. The trx_sys_t::rseg_array[TRX_SYS_N_RSEGS] will
be solely for persistent undo logs.
srv_tmp_undo_logs. Remove. Use the constant TRX_SYS_N_RSEGS.
srv_available_undo_logs: Change the type to ulong.
trx_rseg_get_on_id(): Remove. Instead, let the callers refer to
trx_sys directly.
trx_rseg_create(), trx_sysf_rseg_find_free(): Remove unneeded parameters.
These functions only deal with persistent undo logs.
trx_temp_rseg_create(): New function, to create all temporary rollback
segments at server startup.
trx_rseg_t::is_persistent(): Determine if the rollback segment is for
persistent tables.
trx_sys_is_noredo_rseg_slot(): Remove. The callers must know based on
context (such as table handle) whether the DB_ROLL_PTR is referring to
a persistent undo log.
trx_sys_create_rsegs(): Remove all parameters, which were always passed
as global variables. Instead, modify the global variables directly.
enum trx_rseg_type_t: Remove.
trx_t::get_temp_rseg(): A method to ensure that a temporary
rollback segment has been assigned for the transaction.
trx_t::assign_temp_rseg(): Replaces trx_assign_rseg().
trx_purge_free_segment(), trx_purge_truncate_rseg_history():
Remove the redundant variable noredo=false.
Temporary undo logs are discarded immediately at transaction commit
or rollback, not lazily by purge.
trx_purge_mark_undo_for_truncate(): Remove references to the
temporary rollback segments.
trx_purge_mark_undo_for_truncate(): Remove a check for temporary
rollback segments. Only the dedicated persistent undo log tablespaces
can be truncated.
trx_undo_get_undo_rec_low(), trx_undo_get_undo_rec(): Add the
parameter is_temp.
trx_rseg_mem_restore(): Split from trx_rseg_mem_create().
Initialize the undo log and the rollback segment from the file
data structures.
trx_sysf_get_n_rseg_slots(): Renamed from
trx_sysf_used_slots_for_redo_rseg(). Count the persistent
rollback segment headers that have been initialized.
trx_sys_close(): Also free trx_sys->temp_rsegs[].
get_next_redo_rseg(): Merged to trx_assign_rseg_low().
trx_assign_rseg_low(): Remove the parameters and access the
global variables directly. Revert to simple round-robin, now that
the whole trx_sys->rseg_array[] is for persistent undo log again.
get_next_noredo_rseg(): Moved to trx_t::assign_temp_rseg().
srv_undo_tablespaces_init(): Remove some parameters and use the
global variables directly. Clarify some error messages.
Adjust the test innodb.log_file. Apparently, before these changes,
InnoDB somehow ignored missing dedicated undo tablespace files that
are pointed by the TRX_SYS header page, possibly losing part of
essential transaction system state.
trx::has_logged_persistent(): Renamed from trx_is_redo_rseg_updated().
Determines if a transaction has generated any persistent undo log.
trx::has_logged(): Renamed from trx_is_rseg_updated().
Determines if a transaction has generated any undo log.